Again, I’m simply not seeing this in the paper you linked? As I said above, I simply do not see anything like that outside of section 9, which is irrelevant. Can you point to where you’re seeing this condition?
In Fishburn’s “Bounded Expected Utility”, page 1055, end of first paragraph (as cited previously):
However, we shall for the present take ℘=℘d (for any σ -algebra that contains each x ) since this is the Blackwell-Girshick setting. Not only is ℘d an abstract convex set, but also if αi≥0 and Pi∈℘d for i=1,2,… and Σ∞i=1αi=1 , then Σ∞i=1αiPi∈℘d .
That depends on some earlier definitions, e.g. ℘d is a certain set of probability distributions (the “d” stands for “discrete”) defined with reference to some particular σ -algebra, but the important part is that last infinite sum: this is where all infinitary convex combinations are asserted to exist. Whether that is assigned to “background setup” or “axioms” does not matter. It has to be present, to allow the construction of St. Petersburg gambles.
(This is more properly a followup to my sibling comment, but posting it here so you’ll see it.)
I already said that I think that thinking in terms of infinitary convex combinations, as you’re doing, is the wrong way to go about it; but it took me a bit to put together why that’s definitely the wrong way.
Specifically, it assumes probability! Fishburn, in the paper you link, assumes probability, which is why he’s able to talk about why infinitary convex combinations are or are not allowed (I mean, that and the fact that he’s not necessarily arbitrary actions).
Savage doesn’t assume probability! So if you want to disallow certain actions… how do you specify them? Or if you want to talk about convex combinations of actions—not just infinitary ones, any ones—how do you even define these?
In Savage’s framework, you have to prove that if two actions can be described by the same probabilities and outcomes, then they’re equivalent. E.g., suppose action A results in outcome X with probability 1⁄2 and outcome Y with probability 1⁄2, and suppose action B meets that same description. Are A and B equivalent? Well, yes, but that requires proof, because maybe A and B take outcome X on different sets of probability 1⁄2. (OK, in the two-outcome case it doesn’t really require “proof”, rather it’s basically just his definition of probability; but the more general case requires proof.)
So, until you’ve established that theorem, that it’s meaningful to combine gambles like that, and that the particular events yielding the probabilities aren’t relevant, one can’t really meaningfully define convex combinations at all. This makes it pretty hard to incorporate them into the setup or axioms!
More generally this should apply not only to Savage’s particular formalism, but any formalism that attempts to ground probability as well as utility.
Anyway yeah. As I think I already said, I think we should think of this in terms not of, what combinations of actions yield permitted actions, but rather whether there should be forbidden actions at all. (Note btw in the usual VNM setup there aren’t any forbidden actions either! Although there infinite gambles are, while not forbidden, just kind of ignored.) But this is in particular why trying to put it it in terms of convex combinations as you’ve done doesn’t really work from a fundamentals point of view, where there is no probability yet, only preferences.
I already said that I think that thinking in terms of infinitary convex combinations, as you’re doing, is the wrong way to go about it; but it took me a bit to put together why that’s definitely the wrong way.
Specifically, it assumes probability! Fishburn, in the paper you link, assumes probability, which is why he’s able to talk about why infinitary convex combinations are or are not allowed (I mean, that and the fact that he’s not necessarily arbitrary actions).
Savage doesn’t assume probability!
Savage doesn’t assume probability or utility, but their construction is a mathematical consequence of the axioms. So although they come later in the exposition, they mathematically exist as soon as the axioms have been stated.
So if you want to disallow certain actions… how do you specify them?
I am still thinking about that, and may be some time.
As a general outline of the situation, you read P1-7 ⇒ bounded utility as modus ponens: you accept the axioms and therefore accept the conclusion. I read it as modus tollens: the conclusion seems wrong, so I believe there is a flaw in the axioms. In the same way, the axioms of Euclidean geometry seemed very plausible as a description of the physical space we find ourselves in, but conflicts emerged with phenomena of electromagnetism and gravity, and eventually they were superseded as descriptions of physical space by the geometry of differential manifolds.
It isn’t possible to answer the question “which of P1-7 would I reject?” What is needed to block the proof of bounded utility is a new set of axioms, which will no doubt imply large parts of P1-7, but might not imply the whole of any one of them. If and when such a set of axioms can be found, P1-7 can be re-examined in their light.
Oh, so that’s what you’re referring to. Well, if you look at the theorem statements, you’ll see that P=P_d is an axiom that is explicitly called out in the theorems where it’s assumed; it’s not implictly part of Axiom 0 like you asserted, nor is it more generally left implicit at all.
but the important part is that last infinite sum: this is where all infinitary convex combinations are asserted to exist. Whether that is assigned to “background setup” or “axioms” does not matter. It has to be present, to allow the construction of St. Petersburg gambles.
I really think that thinking in terms of infinitary convex combinations is the wrong way to go about this here. As I said above: You don’t get a St. Petersburg gamble by taking some fancy convex combination, you do it by just constructing the function. (Or, in Fishburn’s framework, you do it by just constructing the distribution; same effect.) I guess without P=P_d you do end up relying on closure properties in Fishburn’s framework, but Savage’s framework just doesn’t work that way at all; and Fishburn with P=P_d, well, that’s not a closure property. Rather what Savage’s setup, and P=P_d have in common, is that they’re, like, arbitrary-construction properties: If you can make a thing, you can compare it.
In Fishburn’s “Bounded Expected Utility”, page 1055, end of first paragraph (as cited previously):
That depends on some earlier definitions, e.g. ℘d is a certain set of probability distributions (the “d” stands for “discrete”) defined with reference to some particular σ -algebra, but the important part is that last infinite sum: this is where all infinitary convex combinations are asserted to exist. Whether that is assigned to “background setup” or “axioms” does not matter. It has to be present, to allow the construction of St. Petersburg gambles.
Will address the rest of your comments later.
(This is more properly a followup to my sibling comment, but posting it here so you’ll see it.)
I already said that I think that thinking in terms of infinitary convex combinations, as you’re doing, is the wrong way to go about it; but it took me a bit to put together why that’s definitely the wrong way.
Specifically, it assumes probability! Fishburn, in the paper you link, assumes probability, which is why he’s able to talk about why infinitary convex combinations are or are not allowed (I mean, that and the fact that he’s not necessarily arbitrary actions).
Savage doesn’t assume probability! So if you want to disallow certain actions… how do you specify them? Or if you want to talk about convex combinations of actions—not just infinitary ones, any ones—how do you even define these?
In Savage’s framework, you have to prove that if two actions can be described by the same probabilities and outcomes, then they’re equivalent. E.g., suppose action A results in outcome X with probability 1⁄2 and outcome Y with probability 1⁄2, and suppose action B meets that same description. Are A and B equivalent? Well, yes, but that requires proof, because maybe A and B take outcome X on different sets of probability 1⁄2. (OK, in the two-outcome case it doesn’t really require “proof”, rather it’s basically just his definition of probability; but the more general case requires proof.)
So, until you’ve established that theorem, that it’s meaningful to combine gambles like that, and that the particular events yielding the probabilities aren’t relevant, one can’t really meaningfully define convex combinations at all. This makes it pretty hard to incorporate them into the setup or axioms!
More generally this should apply not only to Savage’s particular formalism, but any formalism that attempts to ground probability as well as utility.
Anyway yeah. As I think I already said, I think we should think of this in terms not of, what combinations of actions yield permitted actions, but rather whether there should be forbidden actions at all. (Note btw in the usual VNM setup there aren’t any forbidden actions either! Although there infinite gambles are, while not forbidden, just kind of ignored.) But this is in particular why trying to put it it in terms of convex combinations as you’ve done doesn’t really work from a fundamentals point of view, where there is no probability yet, only preferences.
Savage doesn’t assume probability or utility, but their construction is a mathematical consequence of the axioms. So although they come later in the exposition, they mathematically exist as soon as the axioms have been stated.
I am still thinking about that, and may be some time.
As a general outline of the situation, you read P1-7 ⇒ bounded utility as modus ponens: you accept the axioms and therefore accept the conclusion. I read it as modus tollens: the conclusion seems wrong, so I believe there is a flaw in the axioms. In the same way, the axioms of Euclidean geometry seemed very plausible as a description of the physical space we find ourselves in, but conflicts emerged with phenomena of electromagnetism and gravity, and eventually they were superseded as descriptions of physical space by the geometry of differential manifolds.
It isn’t possible to answer the question “which of P1-7 would I reject?” What is needed to block the proof of bounded utility is a new set of axioms, which will no doubt imply large parts of P1-7, but might not imply the whole of any one of them. If and when such a set of axioms can be found, P1-7 can be re-examined in their light.
Oh, so that’s what you’re referring to. Well, if you look at the theorem statements, you’ll see that P=P_d is an axiom that is explicitly called out in the theorems where it’s assumed; it’s not implictly part of Axiom 0 like you asserted, nor is it more generally left implicit at all.
I really think that thinking in terms of infinitary convex combinations is the wrong way to go about this here. As I said above: You don’t get a St. Petersburg gamble by taking some fancy convex combination, you do it by just constructing the function. (Or, in Fishburn’s framework, you do it by just constructing the distribution; same effect.) I guess without P=P_d you do end up relying on closure properties in Fishburn’s framework, but Savage’s framework just doesn’t work that way at all; and Fishburn with P=P_d, well, that’s not a closure property. Rather what Savage’s setup, and P=P_d have in common, is that they’re, like, arbitrary-construction properties: If you can make a thing, you can compare it.