I’m having trouble even seeing how a die could be biased “towards 3 and 4” under such conditions.
If the die is slightly shorter along the 3-4 axis than along the 1-6 and 2-5 axes, then the 3 and 4 faces will have slightly greater surface area than the other faces.
Our models differ, then: I was assuming a strictly cubic die. So maybe we should also model our uncertainty over the dimensions of the (parallelepipedic) die.
But it seems in any case that we are circling back to the question of model checking, via the requirement that we should first be clear about what our uncertainty is about.
If the die is slightly shorter along the 3-4 axis than along the 1-6 and 2-5 axes, then the 3 and 4 faces will have slightly greater surface area than the other faces.
Our models differ, then: I was assuming a strictly cubic die. So maybe we should also model our uncertainty over the dimensions of the (parallelepipedic) die.
But it seems in any case that we are circling back to the question of model checking, via the requirement that we should first be clear about what our uncertainty is about.
Cyan, I was hoping you’d show up. What do you think about this whole mess?
I find myself at a loss to give a brief answer. Can you ask a more specific question?