Psy-Kosh: Oh, I almost forgot to answer your questions. Experimental results are still several years distant. The basic idea is to fabricate a tiny cantilever with an even tinier mirror attached to its end. Then, you position that mirror at one end of a photon cavity (the other end being a regular fixed mirror). If you then send a photon into the cavity through a half-silvered third mirror—so that it will be in a superposition of being in and not in the cavity—then the cantilever will be put into a correlated superposition: it will be vibrating if the photon is in the cavity and it will be still if the photon is not. Of course, the really, really super-hard part is getting all this to happen without the state decohering before you see anything interesting.
Robin Z: The motivation for suspecting that something funny happens as you try scale up decoherance to full blown many-worlds comes from the serious problems that many-worlds has. Beyond the issue with predicting the Born postulate, there are serious conceptual problems with defining individual worlds, even emergently.
The motivation for doing this experiment is even more clear: (1) The many-worlds interpretation is a fantastically profound statement about our universe and therefore demands that fantastic experimental work be done to confirm it as best as is possible. (For instance, despite the fact that I very confidently expect Bell’s inequality to continue to hold after each tenuous experimental loophole is closed, I still consider it an excellent use of my tax dollars that these experiments continue to be improved). (2) Fundamental new regimes in physics should always be probed, especially at this daunting time in the history of physics where we seem to be able to predict nearly everything we see around us but unable to extend our theories to in-principally testable but currently inaccessible regimes. (3) It’s just plain cool.
Psy-Kosh: Oh, I almost forgot to answer your questions. Experimental results are still several years distant. The basic idea is to fabricate a tiny cantilever with an even tinier mirror attached to its end. Then, you position that mirror at one end of a photon cavity (the other end being a regular fixed mirror). If you then send a photon into the cavity through a half-silvered third mirror—so that it will be in a superposition of being in and not in the cavity—then the cantilever will be put into a correlated superposition: it will be vibrating if the photon is in the cavity and it will be still if the photon is not. Of course, the really, really super-hard part is getting all this to happen without the state decohering before you see anything interesting.
Robin Z: The motivation for suspecting that something funny happens as you try scale up decoherance to full blown many-worlds comes from the serious problems that many-worlds has. Beyond the issue with predicting the Born postulate, there are serious conceptual problems with defining individual worlds, even emergently.
The motivation for doing this experiment is even more clear: (1) The many-worlds interpretation is a fantastically profound statement about our universe and therefore demands that fantastic experimental work be done to confirm it as best as is possible. (For instance, despite the fact that I very confidently expect Bell’s inequality to continue to hold after each tenuous experimental loophole is closed, I still consider it an excellent use of my tax dollars that these experiments continue to be improved). (2) Fundamental new regimes in physics should always be probed, especially at this daunting time in the history of physics where we seem to be able to predict nearly everything we see around us but unable to extend our theories to in-principally testable but currently inaccessible regimes. (3) It’s just plain cool.