I think that’s a good way of framing it. Imagine it’s the far future, long after AI is a completely solved problem. Just for fun, somebody writes the smallest possible fully general seed AI in binary code. How big is that program? I’m going to guess it’s not bigger than 1 GB. The human genome is ~770 MB. Yes, it runs on “chemistry”, but that laws of physics underpinning chemistry/physics actually don’t take that many bytes to specify. Certainly not hundreds of megabytes.
Maybe a clearer question would be, how many bytes do you need to beam to aliens, in order for them to grow a human? The details of the structure of the embryonic cell, the uterus, the umbilical cord, the mother’s body, etc., are mostly already encoded in the genome, because a genome contains the instructions for copying itself via reproduction. Maybe you end up sending a few hundred more megabytes of instructions as metadata for unpacking and running the genome, but not more than that.
Still, though, genomes are bloated. I’ll bet you can build an intelligence on much less than 770 MB. 98.8% of the genome definitely has nothing to do with the secret sauce of having a powerful general intelligence. We know this because we share that much of our genome with chimps. Yes, you need a body to have a brain, so there’s a boring sense in which you need the whole genome to build a brain, but this argument doesn’t apply to AIs, which don’t need to rely on ancient legacy biology.
I think that’s a good way of framing it. Imagine it’s the far future, long after AI is a completely solved problem. Just for fun, somebody writes the smallest possible fully general seed AI in binary code. How big is that program? I’m going to guess it’s not bigger than 1 GB. The human genome is ~770 MB. Yes, it runs on “chemistry”, but that laws of physics underpinning chemistry/physics actually don’t take that many bytes to specify. Certainly not hundreds of megabytes.
Maybe a clearer question would be, how many bytes do you need to beam to aliens, in order for them to grow a human? The details of the structure of the embryonic cell, the uterus, the umbilical cord, the mother’s body, etc., are mostly already encoded in the genome, because a genome contains the instructions for copying itself via reproduction. Maybe you end up sending a few hundred more megabytes of instructions as metadata for unpacking and running the genome, but not more than that.
Still, though, genomes are bloated. I’ll bet you can build an intelligence on much less than 770 MB. 98.8% of the genome definitely has nothing to do with the secret sauce of having a powerful general intelligence. We know this because we share that much of our genome with chimps. Yes, you need a body to have a brain, so there’s a boring sense in which you need the whole genome to build a brain, but this argument doesn’t apply to AIs, which don’t need to rely on ancient legacy biology.