Evolution selects for genes that increase their frequency in their gene pool. That’s all it does. IGF, if it’s trying to impute values to evolution, would have to be precisified to refer to inclusive genetic relative fitness, i.e. inclusively (of kin) increasing one’s relative offspring count, i.e. the frequency of one’s genes in the gene pool. It’s reasonable to approximate this as increasing the number of one’s descendants, and descendants of family members weighted by relatedness; but that approximation breaks down to the extent that your actions can meaningfully affect the total population.
I mean, I’m totally with you on optimizing for the thing you’re talking about, rather than selfish-gene-inclusive-relative-fitness. But that’s a deviation from “what evolution is optimizing for, if anything”.
If only relative frequency of genes matters, then the overall size of the gene pool doesn’t matter. If the overall size of the gene pool doesn’t matter, then it doesn’t matter if that size is zero. If the size of the gene pool is zero, then whatever was included in that gene pool is extinct.
Yes, it’s true people make all kinds of incorrect inferences because they think genes that increase the size of the gene pool will be selected for or those that decrease it will be selected against. But it’s still also true that a gene that reduces the size of the pool it’s in to zero will no longer be found in any living organisms, regardless of what its relative frequency was in the process of the pool reaching a size of zero. If the term IGF doesn’t include that, that just means IGF isn’t a complete way of accounting for what organisms we observe to exist in what frequencies and how those change over time.
I’m sorry, you’re confused but I don’t know what to point you to. Maybe this
https://en.wikipedia.org/wiki/Gene-centered_view_of_evolution
Evolution selects for genes that increase their frequency in their gene pool. That’s all it does. IGF, if it’s trying to impute values to evolution, would have to be precisified to refer to inclusive genetic relative fitness, i.e. inclusively (of kin) increasing one’s relative offspring count, i.e. the frequency of one’s genes in the gene pool. It’s reasonable to approximate this as increasing the number of one’s descendants, and descendants of family members weighted by relatedness; but that approximation breaks down to the extent that your actions can meaningfully affect the total population.
I mean, I’m totally with you on optimizing for the thing you’re talking about, rather than selfish-gene-inclusive-relative-fitness. But that’s a deviation from “what evolution is optimizing for, if anything”.
If only relative frequency of genes matters, then the overall size of the gene pool doesn’t matter. If the overall size of the gene pool doesn’t matter, then it doesn’t matter if that size is zero. If the size of the gene pool is zero, then whatever was included in that gene pool is extinct.
Yes, it’s true people make all kinds of incorrect inferences because they think genes that increase the size of the gene pool will be selected for or those that decrease it will be selected against. But it’s still also true that a gene that reduces the size of the pool it’s in to zero will no longer be found in any living organisms, regardless of what its relative frequency was in the process of the pool reaching a size of zero. If the term IGF doesn’t include that, that just means IGF isn’t a complete way of accounting for what organisms we observe to exist in what frequencies and how those change over time.
True, but it’s very nearly entirely the process that only cares about relative frequencies that constructs complex mechanisms such as brains.