A key question is: how long is this period between “This specific model-based RL technological path is producing the AIs that everyone is using and everyone is talking about” and “This specific model-based RL technological path can produce an out-of-control AGI that could destroy the world”?
Hard to say, but “a couple years” seems entirely plausible to me, and even “zero years (because, until the leading team worked out the kinks, their results weren’t great compared to other very different approaches, and few people were paying attention)” seems plausible. Whereas even “10 years” seems implausibly high to me, I think.
I don’t think Paul would disagree with you about “a couple years” being plausible, based on Agreements #8 from his post (bold mine):
8. The broader intellectual world seems to wildly overestimate how long it will take AI systems to go from “large impact on the world” to “unrecognizably transformed world.” This is more likely to be years than decades, and there’s a real chance that it’s months. This makes alignment harder and doesn’t seem like something we are collectively prepared for.
At first I read Paul’s post as having very gradualist assumptions all around. But he clarified to me in this comment and the back-and-forth we had in replies that he’s a bit long on the initial time before AI has large impact on the world (similar to your “This specific model-based RL technological path is producing the AIs that everyone is using and everyone is talking about”), which he pegs at ~40% by 2040. After that point, he predicts a pretty speedy progression to “unrecognizably transformed world”, which I think includes the possibility of catastrophe.
I don’t think Paul is saying the same thing as me. My wording was bad, sorry.
When I said “the AIs that everyone is using and everyone is talking about”, I should have said “the AIs that are receiving a very large share of overall attention and investment by the ML research community”. (I just went back and edited the original.)
As of today (2022), large language models are “the AIs that are receiving a very large share of overall attention and investment by the ML research community”. But they are not having a “large impact on the world” by Paul’s definition. For example, the current contribution of large language models to global GDP is ≈0%.
The question of whether an AI approach is “receiving a very large share of overall attention and investment by the ML research community” is very important because:
if yes, we expect low-hanging fruit to be rapidly picked, after which we expect incremental smaller advances perpetually, and we expect state-of-the-art models to be using roughly the maximum amount of compute that is at all possible to use.
if no (i.e. if an AI approach is comparatively a bit of a backwater, like say model-based RL or probabilistic programming today), we should be less surprised by (for example) a flurry of very impactful advances within a short period of time, while most people aren’t paying attention, and then bam, we have a recipe for a superhuman AGI that can be trained on a university GPU cluster.
I suspect that LLMs are going to be put to more and more practical use in the near future. I just did a search on “AI and legal briefs” and came up with ads and articles about “prediction based” systems to help lawyers prepare legal briefs. I assume “prediction based” means LLM.
I don’t think Paul would disagree with you about “a couple years” being plausible, based on Agreements #8 from his post (bold mine):
At first I read Paul’s post as having very gradualist assumptions all around. But he clarified to me in this comment and the back-and-forth we had in replies that he’s a bit long on the initial time before AI has large impact on the world (similar to your “This specific model-based RL technological path is producing the AIs that everyone is using and everyone is talking about”), which he pegs at ~40% by 2040. After that point, he predicts a pretty speedy progression to “unrecognizably transformed world”, which I think includes the possibility of catastrophe.
I don’t think Paul is saying the same thing as me. My wording was bad, sorry.
When I said “the AIs that everyone is using and everyone is talking about”, I should have said “the AIs that are receiving a very large share of overall attention and investment by the ML research community”. (I just went back and edited the original.)
As of today (2022), large language models are “the AIs that are receiving a very large share of overall attention and investment by the ML research community”. But they are not having a “large impact on the world” by Paul’s definition. For example, the current contribution of large language models to global GDP is ≈0%.
The question of whether an AI approach is “receiving a very large share of overall attention and investment by the ML research community” is very important because:
if yes, we expect low-hanging fruit to be rapidly picked, after which we expect incremental smaller advances perpetually, and we expect state-of-the-art models to be using roughly the maximum amount of compute that is at all possible to use.
if no (i.e. if an AI approach is comparatively a bit of a backwater, like say model-based RL or probabilistic programming today), we should be less surprised by (for example) a flurry of very impactful advances within a short period of time, while most people aren’t paying attention, and then bam, we have a recipe for a superhuman AGI that can be trained on a university GPU cluster.
Ok I see what you mean, thanks for clarifying.
I suspect that LLMs are going to be put to more and more practical use in the near future. I just did a search on “AI and legal briefs” and came up with ads and articles about “prediction based” systems to help lawyers prepare legal briefs. I assume “prediction based” means LLM.