I think this still contradicts my model: mean_i(<d, theta_i>) = <d, mean_i(theta_i)> therefore if the effect is linear, you would expect the mean to preserve the effect even if the random noise between the theta_i is greatly reduced.
I think this still contradicts my model: mean_i(<d, theta_i>) = <d, mean_i(theta_i)> therefore if the effect is linear, you would expect the mean to preserve the effect even if the random noise between the theta_i is greatly reduced.