Actually, I should have been using curly brackets, as when I wrote (0,1) I meant the set with two elements, 0 and 1, which is what I had taken X to be a product of copies of, hence my obtaining 50000 as the expected Manhattan distance between any two members. I’ll correct the post to make that clear. I think everything I said would still apply to the continuous case. If it doesn’t, that would be better addressed with a separate comment.
Actually, I should have been using curly brackets, as when I wrote (0,1) I meant the set with two elements, 0 and 1, which is what I had taken X to be a product of copies of, hence my obtaining 50000 as the expected Manhattan distance between any two members. I’ll correct the post to make that clear. I think everything I said would still apply to the continuous case. If it doesn’t, that would be better addressed with a separate comment.
Yeah, I don’t think it makes much difference in high-dimensions. It’s just more natural to talk about smoothness in the continuous case.