(I should calculate the expected time to nano in this case, it would be a very interesting fermi estimate).
Lets go!
From Wik:
In early 2008, Rosetta was used to computationally design a protein with a function never before observed in nature.
Skimmed the paper looks like they used the rosetta@home network (~9 TFLOPS) to design a rudimentary enzyme.
So that suggests that a small amount of computation (bearable time by human research standards, allowing for fuckups and restarts) can do protein design. Let’s call it a week of computation total. There’s 1e6 seconds in a week, flopping at a rate of 1e13 flops, giving us 1e19 flops.
They claimed to have tested 1e18 somethings, so our number is plausible, but we should go to at least 1e22 flops to include 1e4 flops per whatever. (which would take a thousand weeks?) something doesn’t add up. Whatever, call it 1e20 (ten weeks) and put some fat error bounds on that.
Don’t know how to deal with the exponential complexity. A proper nanothing could require 1e40 flops (square the exponent for double complexity), or it may factor nicely, requiring only 1e21 flops.
Let’s call it 1e25 flops with current techniques to design nanotech.
If AI is in 20 years, that’s 13 moores doublings or 1e4, then let’s say the AI can seize a network of as much computational power as they used, plus moores scaling.
So 1e21 todayflops, 1e20 of which is doable in a standard research project amount of time with a large distributed network.
So anywhere from days to 20 years, with my numbers giving 2 years, to brute force nanotech on 20-years-in-future computational power with today’s algorithms.
Factor of 1e6 speedups are reasonable in chess (another problem with similar properties) with a bunch of years of human research, so that puts my middle at 10 minutes.
The AI will probably do better than that, but that would be good enough to fuck us.
This was somewhat conservative, even. (nanotech involves 100000 times more computation than these guys used)
Let’s get this thing right the first time....
EDIT: an interesting property of exponential processes is that things go from “totally impossible” to “trivial” very quickly.
Lets go!
From Wik:
Skimmed the paper looks like they used the rosetta@home network (~9 TFLOPS) to design a rudimentary enzyme.
So that suggests that a small amount of computation (bearable time by human research standards, allowing for fuckups and restarts) can do protein design. Let’s call it a week of computation total. There’s 1e6 seconds in a week, flopping at a rate of 1e13 flops, giving us 1e19 flops.
They claimed to have tested 1e18 somethings, so our number is plausible, but we should go to at least 1e22 flops to include 1e4 flops per whatever. (which would take a thousand weeks?) something doesn’t add up. Whatever, call it 1e20 (ten weeks) and put some fat error bounds on that.
Don’t know how to deal with the exponential complexity. A proper nanothing could require 1e40 flops (square the exponent for double complexity), or it may factor nicely, requiring only 1e21 flops.
Let’s call it 1e25 flops with current techniques to design nanotech.
If AI is in 20 years, that’s 13 moores doublings or 1e4, then let’s say the AI can seize a network of as much computational power as they used, plus moores scaling.
So 1e21 todayflops, 1e20 of which is doable in a standard research project amount of time with a large distributed network.
So anywhere from days to 20 years, with my numbers giving 2 years, to brute force nanotech on 20-years-in-future computational power with today’s algorithms.
Factor of 1e6 speedups are reasonable in chess (another problem with similar properties) with a bunch of years of human research, so that puts my middle at 10 minutes.
The AI will probably do better than that, but that would be good enough to fuck us.
This was somewhat conservative, even. (nanotech involves 100000 times more computation than these guys used)
Let’s get this thing right the first time....
EDIT: an interesting property of exponential processes is that things go from “totally impossible” to “trivial” very quickly.
Note that by these estimates, humans should be able to have nano around 2030. Scary stuff.