Section 5: The initial effort to get some numerical models going could be overestimated, unless such models have been done already. At the very least, a small-scale effort can pin-point the hard issues. This reminds me of the core-collapse Supernova modeling: it was reasonably easy to get the explosion modeled, except for the ignition by the initial shock wave. We still don’t know what exactly makes them go FOOM. Most models predict a fizzle instead of an explosion. This is likely just a surface analogy, but it might well be that a few months of summer student-level simulations, as opposed to a few years of a PhD-level work, would point to the weak links in the model.
Section 5:
The initial effort to get some numerical models going could be overestimated, unless such models have been done already. At the very least, a small-scale effort can pin-point the hard issues. This reminds me of the core-collapse Supernova modeling: it was reasonably easy to get the explosion modeled, except for the ignition by the initial shock wave. We still don’t know what exactly makes them go FOOM. Most models predict a fizzle instead of an explosion. This is likely just a surface analogy, but it might well be that a few months of summer student-level simulations, as opposed to a few years of a PhD-level work, would point to the weak links in the model.