Flip two coins 1000 times, then count how many of those trials have at least one head (~750). Count how many of those trials have two heads (~250).
Flip two coins 1000 times, then count how many of those trials have the first flip be a head (~500). Count how many of those trials have two heads (~250).
By the way, these sorts of puzzles should really be expressed as a question-and-answer dialogue. Simply volunteering information leaves it ambiguous as to what you’ve actually learned (“would this person have equally likely said ‘one of my children is a girl’ if they had both a boy and girl?”).
Yeah, probably the biggest thing I don’t like about this particular question is that the answer depends entirely upon unstated assumptions, but at the same time it clearly illustrates how important it is to be specific.
Flip two coins 1000 times, then count how many of those trials have at least one head (~750). Count how many of those trials have two heads (~250).
Flip two coins 1000 times, then count how many of those trials have the first flip be a head (~500). Count how many of those trials have two heads (~250).
By the way, these sorts of puzzles should really be expressed as a question-and-answer dialogue. Simply volunteering information leaves it ambiguous as to what you’ve actually learned (“would this person have equally likely said ‘one of my children is a girl’ if they had both a boy and girl?”).
Yeah, probably the biggest thing I don’t like about this particular question is that the answer depends entirely upon unstated assumptions, but at the same time it clearly illustrates how important it is to be specific.