I think the only reasonable interpretation of the text is clear since otherwise other standard problems would be ambiguous as well:
“What is probability that a person’s random coin toss is tails?”
It does not matter whether you get the information from an experimenter by asking “Tell me the result of your flip!” or “Did you get tails?”. You just have to stick to the original text (tails) when you evaluate the answer in either case.
[[EDIT] I think I misinterpreted your comment. I agree that Daniel’s introduction was ambiguous for the reasons you have given.
Still the wording “I have two children, and at least one of them is a boy-born-on-a-Tuesday.” he has given clarifies it (and makes it well defined under the standard assumptions of indifference).
Yesterday I told the problem to a smart non-math-geek friend, and he totally couldn’t relate to this “only reasonable interpretation”. He completely understood the argument leading to 13⁄27, but just couldn’t understand why do we assume that the presenter is a randomly chosen member of the population he claims himself to be a member of. That sounded like a completely baseless assumption to him, that leads to factually incorrect results. He even understood that assuming it is our only choice if we want to get a well-defined math problem, and it is the only way to utilize all the information presented to us in the puzzle. But all this was not enough to convince him that he should assume something so stupid.
I think the only reasonable interpretation of the text is clear since otherwise other standard problems would be ambiguous as well:
“What is probability that a person’s random coin toss is tails?”
It does not matter whether you get the information from an experimenter by asking “Tell me the result of your flip!” or “Did you get tails?”. You just have to stick to the original text (tails) when you evaluate the answer in either case.
[[EDIT] I think I misinterpreted your comment. I agree that Daniel’s introduction was ambiguous for the reasons you have given.
Still the wording “I have two children, and at least one of them is a boy-born-on-a-Tuesday.” he has given clarifies it (and makes it well defined under the standard assumptions of indifference).
Yesterday I told the problem to a smart non-math-geek friend, and he totally couldn’t relate to this “only reasonable interpretation”. He completely understood the argument leading to 13⁄27, but just couldn’t understand why do we assume that the presenter is a randomly chosen member of the population he claims himself to be a member of. That sounded like a completely baseless assumption to him, that leads to factually incorrect results. He even understood that assuming it is our only choice if we want to get a well-defined math problem, and it is the only way to utilize all the information presented to us in the puzzle. But all this was not enough to convince him that he should assume something so stupid.
For me, the eye opener was this outstanding paper by E.T. Jaynes:
http://bayes.wustl.edu/etj/articles/well.pdf
IMO this describes the essence of the difference between the Bayesian and frequentist philosophy way better than any amount of colorful polygons. ;)