I notice I’m confused- SA’s variant, if legitimately due to a huge jump in R, doesn’t have huge numbers of mutations.
If the UK variant had a 45% jump in R, and SA’s has a 20%, and >20% is much more commonly due to IC’d patients, then it seems reasonable that the super-fit, highly mutated strains show up alongside the more mundanely fit, moderately mutated ones. The super-fit’s take longer to bake but they take off faster. But then again I’m trying to make a theory to explain 2 data points that I’m not 100% are both correct, so as much as this feels correct it probably isn’t.
So the emerging wisdom is that the SA variant is less contagious, or are you just using 20% as an example? The fact that SA is currently at the height of summer, and that they went from “things largely under control” to “more hospitalizations and deaths than the 1st wave in their winter” in a short amount of time, makes me suspect that the SA variant is at least as contagious as the UK variant. (I’m largely ignoring politicians bickering at each other over this, and of course if there’s already been research on this question then I’ll immediately quit speculating!)
Oops, missed this. I don’t check LW messages much.
20% was not an exact value. At the time I wasn’t aware of any estimates. Since then I’ve heard that the standard curve fit returns a ~50% growth per 6.5 days, some or all of which may be due to immune escape.)
I had a couple assumptions that made me think the SA strain was less contagious in expectation:
High contagiousness is more likely when high mutation numbers were seen, and correspondingly emergence would tend to be later. The SA variant gained local dominance earlier than the UK.
There was (and is) much less data on the SA variant. Due to the high variation in number of infectees per sick person, my prior is that on average, a variant that seems to be gaining ground is not as infectious as a curve fit implies, because luck could be a big factor and is more common than extreme fitness.
I notice I’m confused- SA’s variant, if legitimately due to a huge jump in R, doesn’t have huge numbers of mutations.
If the UK variant had a 45% jump in R, and SA’s has a 20%, and >20% is much more commonly due to IC’d patients, then it seems reasonable that the super-fit, highly mutated strains show up alongside the more mundanely fit, moderately mutated ones. The super-fit’s take longer to bake but they take off faster. But then again I’m trying to make a theory to explain 2 data points that I’m not 100% are both correct, so as much as this feels correct it probably isn’t.
So the emerging wisdom is that the SA variant is less contagious, or are you just using 20% as an example? The fact that SA is currently at the height of summer, and that they went from “things largely under control” to “more hospitalizations and deaths than the 1st wave in their winter” in a short amount of time, makes me suspect that the SA variant is at least as contagious as the UK variant. (I’m largely ignoring politicians bickering at each other over this, and of course if there’s already been research on this question then I’ll immediately quit speculating!)
Oops, missed this. I don’t check LW messages much.
20% was not an exact value. At the time I wasn’t aware of any estimates. Since then I’ve heard that the standard curve fit returns a ~50% growth per 6.5 days, some or all of which may be due to immune escape.)
I had a couple assumptions that made me think the SA strain was less contagious in expectation:
High contagiousness is more likely when high mutation numbers were seen, and correspondingly emergence would tend to be later. The SA variant gained local dominance earlier than the UK.
There was (and is) much less data on the SA variant. Due to the high variation in number of infectees per sick person, my prior is that on average, a variant that seems to be gaining ground is not as infectious as a curve fit implies, because luck could be a big factor and is more common than extreme fitness.