I think it would be possible to have an anti-Occam prior if the total complexity of the universe is bounded.
Suppose we list integers according to an unknown rule, and we favor rules with high complexity. Given the problem statement, we should take an anti-Occam prior to determine the rule given the list of integers. It doesn’t diverge because the list has finite length, so the complexity is bounded.
Scaling up, the universe presumably has a finite number of possible configurations given any prior information. If we additionally had information that led us to take an Anti-Occam prior, it would not diverge.
I think it would be possible to have an anti-Occam prior if the total complexity of the universe is bounded.
Suppose we list integers according to an unknown rule, and we favor rules with high complexity. Given the problem statement, we should take an anti-Occam prior to determine the rule given the list of integers. It doesn’t diverge because the list has finite length, so the complexity is bounded.
Scaling up, the universe presumably has a finite number of possible configurations given any prior information. If we additionally had information that led us to take an Anti-Occam prior, it would not diverge.