Nick_Tarleton: I think you’re going a bit too far there. Stability control theory had by that time been rigorously and scientifically studied, dating back to Watts’s flyball governor in the 18th century (which controlled shaft rotation speed by allowing a ball to swing out and increase rotational inertia as it sped up) and probably even before that with the incubator (which used heat to move a valve that allowed just the right amount of cooling air in). Then all throughout the 19th century engineers attacked the problem of “hunting” on trains, where they would unsettlingly lurch faster and slower. Bicycles, a fairly recent invention then, had to tackle the rotational stability problem, somewhat similar (as many bicycle design constraints are) to what aircraft deal with.
Certainly, many inventors grasped at straws in attempt to replicate functionality, but the idea that they considered the stability implications of the beak isn’t too outlandish.
Nick_Tarleton: I think you’re going a bit too far there. Stability control theory had by that time been rigorously and scientifically studied, dating back to Watts’s flyball governor in the 18th century (which controlled shaft rotation speed by allowing a ball to swing out and increase rotational inertia as it sped up) and probably even before that with the incubator (which used heat to move a valve that allowed just the right amount of cooling air in). Then all throughout the 19th century engineers attacked the problem of “hunting” on trains, where they would unsettlingly lurch faster and slower. Bicycles, a fairly recent invention then, had to tackle the rotational stability problem, somewhat similar (as many bicycle design constraints are) to what aircraft deal with.
Certainly, many inventors grasped at straws in attempt to replicate functionality, but the idea that they considered the stability implications of the beak isn’t too outlandish.