Wait… do the empirical results from a set-up of two identical particles always, in any arbitrary experiment, differ from the empirical results from a set-up of two non-identical particles by an observable amount? Otherwise this all falls apart due to simple error of observation.
Consider: carbon. It has six electrons. If they are identical, none of them can be in the same state by the Pauli exclusion principle, and organic chemistry is a fairly direct consequence. If they are distinct, they all fall into an S1 orbital, and Carbon chemistry is just like Hydrogen chemistry but more so.
Wait… do the empirical results from a set-up of two identical particles always, in any arbitrary experiment, differ from the empirical results from a set-up of two non-identical particles by an observable amount? Otherwise this all falls apart due to simple error of observation.
Consider: carbon. It has six electrons. If they are identical, none of them can be in the same state by the Pauli exclusion principle, and organic chemistry is a fairly direct consequence. If they are distinct, they all fall into an S1 orbital, and Carbon chemistry is just like Hydrogen chemistry but more so.
Would you say that’s an observable difference?