The proof generalizes to the second inspected action, etc., by looking at the first one that yields a contradiction.
I tried this in the case that the output of A provably lies in the set {a,b}. I only managed to prove
(S⊢¬P)⇒¬Con(S+Con(S))
where P is the proposition “A()=b” where b is the second inspected action. But this still implies
if one player plays chicken, then all of them do, and that fact is provable within S.
Thanks! I think you found a real hole and the conclusion is also wrong. Or at least I don’t see how
implies the conclusion.
The conclusions that I think I can draw are
¬(S⊢A()=a)∧(S⊢A()=b) ⇒ Con(S)∧¬Con(S+Con(S)) ⇒ A()=b
So if one player plays chicken on the second inspected action, then all of them do.
I’m still not getting it. Can you explain the proof of the following:
Con(S)∧¬Con(S+Con(S)) ⇒ A()=b
¬Con(S+Con(S)) ⇒ S⊢¬Con(S)
⇒ S⊢Prv(A()≠a) (if S is inconsistent, then it proves anything)
⇒ S⊢A()=a (because A plays chicken)
⇒ S⊢A()≠b
Con(S)∧¬Con(S+Con(S)) ⇒ Con(S)∧(S⊢A()≠b) (follows directly from 4)
⇒ (S⊬A()=b)∧(S⊢A()≠b) (a consistent theory can’t prove a proposition and its negation)
⇒ (S⊬A()≠a)∧(S⊢A()≠b) (here I’m assuming that S⊢(A()=a∨A()=b). I don’t know what to do if A can choose between more than two alternatives.)
⇒ A()=b (A plays chicken on the second inspected action)
I tried this in the case that the output of A provably lies in the set {a,b}. I only managed to prove
(S⊢¬P)⇒¬Con(S+Con(S))
where P is the proposition “A()=b” where b is the second inspected action. But this still implies
Thanks! I think you found a real hole and the conclusion is also wrong. Or at least I don’t see how
(S⊢¬P)⇒¬Con(S+Con(S))
implies the conclusion.
The conclusions that I think I can draw are
¬(S⊢A()=a)∧(S⊢A()=b) ⇒ Con(S)∧¬Con(S+Con(S)) ⇒ A()=b
So if one player plays chicken on the second inspected action, then all of them do.
I’m still not getting it. Can you explain the proof of the following:
Con(S)∧¬Con(S+Con(S)) ⇒ A()=b
¬Con(S+Con(S)) ⇒ S⊢¬Con(S)
⇒ S⊢Prv(A()≠a) (if S is inconsistent, then it proves anything)
⇒ S⊢A()=a (because A plays chicken)
⇒ S⊢A()≠b
Con(S)∧¬Con(S+Con(S)) ⇒ Con(S)∧(S⊢A()≠b) (follows directly from 4)
⇒ (S⊬A()=b)∧(S⊢A()≠b) (a consistent theory can’t prove a proposition and its negation)
⇒ (S⊬A()≠a)∧(S⊢A()≠b) (here I’m assuming that S⊢(A()=a∨A()=b). I don’t know what to do if A can choose between more than two alternatives.)
⇒ A()=b (A plays chicken on the second inspected action)