Definition: Prevent(C)={S⊆W | ∃a∈A, ∀e∈E, a⋅e∉S}.
A useful alternate definition of this is:Prevent(C)={SC | S∈Ensure(C)}Where SC refers to W∖S. Proof:
Prevent(C)={S⊆W | ∃a∈A s.t. ∀e∈E, a⋅e∉S}={S⊆W | ∃a∈A s.t. ∀e∈E, a⋅e∈SC}={SC | S∈Ensure(C)}
A useful alternate definition of this is:
Prevent(C)={SC | S∈Ensure(C)}
Where SC refers to W∖S. Proof:
Prevent(C)={S⊆W | ∃a∈A s.t. ∀e∈E, a⋅e∉S}={S⊆W | ∃a∈A s.t. ∀e∈E, a⋅e∈SC}={SC | S∈Ensure(C)}