My knowledge of it is pretty superficial, but I’m pretty confused about how it represents states with a superposition of particle numbers. For fixed number of (non relativistic) particles you can always just put the interesting mechanics (including spin, electromagnetic charge, etc!) in the wavefunction and then add an epiphenomenal ontologically-fundamental-particle like a cherry on top. We’ll, epiphenomenal in the Von Neumann measurement paradigm, presumably advocates think it plays some role in measurement, but I’m still a bit vague on that.
Anyhow, for mixtures of particle numbers, I genuinely don’t know how a Bohmian is supposed to get anything intuitive or pseudo-classical.
My knowledge of it is pretty superficial, but I’m pretty confused about how it represents states with a superposition of particle numbers. For fixed number of (non relativistic) particles you can always just put the interesting mechanics (including spin, electromagnetic charge, etc!) in the wavefunction and then add an epiphenomenal ontologically-fundamental-particle like a cherry on top. We’ll, epiphenomenal in the Von Neumann measurement paradigm, presumably advocates think it plays some role in measurement, but I’m still a bit vague on that.
Anyhow, for mixtures of particle numbers, I genuinely don’t know how a Bohmian is supposed to get anything intuitive or pseudo-classical.