It’s also quite challenging to create high energy particles, they tend to rapidly collide and dissipate their energy. The CERN “Large Hadron Collider” is the most powerful particle accelerator that humans have built: https://home.cern/resources/faqs/facts-and-figures-about-lhc It involves 27 kilometers of superconducting magnets and produces proton collisions of 1.3*10^13eV.
Most cosmic rays are in the range of 10^6 eV to 10^9 eV https://news.uchicago.edu/explainer/what-are-cosmic-rays But there have been a few very powerful cosmic rays detected. Betwen 2004 and 2007, the Pierre Auger Observatory detected 27 events with energies above 5.7 * 10^19 eV and the “Oh-My-God” particle detected in 1991 had an energy of 3.2 * 10^20 eV.
So they can happen but would be extremely difficult for an adversary to generate. The only reason he put 10^11 as a limit is that’s the highest we’ve been able to definitively explore with accelerators. There may be more unexpected particles up there, but I don’t think they would make much of a difference to the kinds of devices we’re talking about.
But we certainly have to be vigilant! ASIs will likely explore every avenue and may very well be able to discover the “Theory of Everything”. We need to design our systems so that we can update them with new knowledge. Ideally we would also have confidence that our infrastructure could detect attempts to subvert it by pushing outside the domain of validity of our models.
While dark energy and dark matter have a big effect on the evolution of the universe as a whole, they don’t interact in any measurable way with systems here on earth. Ethan Siegel has some great posts narrowing down their properties based on what we definitively know, eg. https://bigthink.com/starts-with-a-bang/dark-matter-bullet-cluster/ So it’s important on large scales but not, say, on the scale of earth. Of course, if we consider the evolution of AI and humanity over much longer timescales, then we will likely need a detailed theory. That again shows that we need to work with precise models which may expand their regimes of applicability.
It’s very hard to get large gravitational fields. The closest known black hole to Earth is Gaia BH1 which is 1560 light-years away: https://www.space.com/closest-massive-black-hole-earth-hubble The strongest gravitational waves come from the collision of two black holes but by the time they reach Earth they are so weak it takes huge effort to measure them and they are in the weak curvature regime where standard quantum field theory is fine: https://www.ligo.caltech.edu/page/what-are-gw#:~:text=The%20strongest%20gravitational%20waves%20are,)%2C%20and%20colliding%20neutron%20stars.
It’s also quite challenging to create high energy particles, they tend to rapidly collide and dissipate their energy. The CERN “Large Hadron Collider” is the most powerful particle accelerator that humans have built: https://home.cern/resources/faqs/facts-and-figures-about-lhc It involves 27 kilometers of superconducting magnets and produces proton collisions of 1.3*10^13eV.
Most cosmic rays are in the range of 10^6 eV to 10^9 eV https://news.uchicago.edu/explainer/what-are-cosmic-rays But there have been a few very powerful cosmic rays detected. Betwen 2004 and 2007, the Pierre Auger Observatory detected 27 events with energies above 5.7 * 10^19 eV and the “Oh-My-God” particle detected in 1991 had an energy of 3.2 * 10^20 eV.
So they can happen but would be extremely difficult for an adversary to generate. The only reason he put 10^11 as a limit is that’s the highest we’ve been able to definitively explore with accelerators. There may be more unexpected particles up there, but I don’t think they would make much of a difference to the kinds of devices we’re talking about.
But we certainly have to be vigilant! ASIs will likely explore every avenue and may very well be able to discover the “Theory of Everything”. We need to design our systems so that we can update them with new knowledge. Ideally we would also have confidence that our infrastructure could detect attempts to subvert it by pushing outside the domain of validity of our models.
While dark energy and dark matter have a big effect on the evolution of the universe as a whole, they don’t interact in any measurable way with systems here on earth. Ethan Siegel has some great posts narrowing down their properties based on what we definitively know, eg. https://bigthink.com/starts-with-a-bang/dark-matter-bullet-cluster/ So it’s important on large scales but not, say, on the scale of earth. Of course, if we consider the evolution of AI and humanity over much longer timescales, then we will likely need a detailed theory. That again shows that we need to work with precise models which may expand their regimes of applicability.