fact that any ASI must actually exist in the world
It’s a mathematical existence proof that the ASI exists as a mathematical object, so this part is not necessary. However, I can also argue quite convincingly that an ASI similar to LT:BGROW (let’s call it FA:BGROW—FA for “functional approximation) must easily fit in the world and also emit less waste heat than a team of human advisors.
Perhaps you are missing the point of what I am saying here somewhat? The issue is is not the scale of the side-effect of a computation, it’s the fact that the side-effect exists, so any accurate mathematical abstraction of an actual real-world ASI must be prepared to deal with solving a self-referential equation.
It’s a mathematical existence proof that the ASI exists as a mathematical object, so this part is not necessary. However, I can also argue quite convincingly that an ASI similar to LT:BGROW (let’s call it FA:BGROW—FA for “functional approximation) must easily fit in the world and also emit less waste heat than a team of human advisors.
Perhaps you are missing the point of what I am saying here somewhat? The issue is is not the scale of the side-effect of a computation, it’s the fact that the side-effect exists, so any accurate mathematical abstraction of an actual real-world ASI must be prepared to deal with solving a self-referential equation.
But it’s not that: it’s a mathematical abstraction of a disembodied ASI that lacks any physical footprint.