The sequence a hypothesis predicts the inductor to receive is not the world model that hypothesis implies.
A hypothesis can consist of very simple laws of physics describing time evolution in an eternal universe, yet predict that the sequence will be cut off soon because the camera that is sending the pixel values that are the sequence the inductor is seeing is about to die.
Solomonoff indiction doesn’t say anything about larger world models that contain the one-dimensional sequences that form the Solomonoff distribution. You appear to be saying that although the predicted sequence is always solipsistic from the point of view of the inductor, there can be a larger reality that contains that sequence, but that is an extra add-on that doesn’t appear anywhere in the original Solomonoff induction.
A Solomonoff hypothesis can be any computable model that predicts the sequence, including any model that also happens to predict a larger reality if queried in that way. There are always infinitely many such “large world” models that are compatible with the input sequence up to any given point, and all of them are assigned nonzero probability.
It is possible that there may be a simpler model that predicts the same sequence and does not model the existence of any other reality in any meaningful sense, but I suspect that a general universe model plus a fixed-size “you are here” will in a universe with computable rules remain pretty close to optimal.
The sequence a hypothesis predicts the inductor to receive is not the world model that hypothesis implies.
A hypothesis can consist of very simple laws of physics describing time evolution in an eternal universe, yet predict that the sequence will be cut off soon because the camera that is sending the pixel values that are the sequence the inductor is seeing is about to die.
Solomonoff indiction doesn’t say anything about larger world models that contain the one-dimensional sequences that form the Solomonoff distribution. You appear to be saying that although the predicted sequence is always solipsistic from the point of view of the inductor, there can be a larger reality that contains that sequence, but that is an extra add-on that doesn’t appear anywhere in the original Solomonoff induction.
A Solomonoff hypothesis can be any computable model that predicts the sequence, including any model that also happens to predict a larger reality if queried in that way. There are always infinitely many such “large world” models that are compatible with the input sequence up to any given point, and all of them are assigned nonzero probability.
It is possible that there may be a simpler model that predicts the same sequence and does not model the existence of any other reality in any meaningful sense, but I suspect that a general universe model plus a fixed-size “you are here” will in a universe with computable rules remain pretty close to optimal.