I didn’t downvote, but I couldn’t see what MWI actually changed about the problem. The simulations are also subject to MWI, so you’re multiplying both sides of the comparison by the same large number. Hmm. Unless the simulations are implemented on quantum computers, which would minimize the branching. It’s not clear to me that you can mimic the algorithm without having the same degree of total decoherence.
No, the simulations are not subject to MWI. I mean, we don’t know what “matrix lord physics” is, but we have his word that there are 3^^^^3 individuals inside those simulations, and presumably that’s after any MWI effects are factored in.
If instead of Matrix Lord, we were just facing Galaxy Of Computronium Woman, we’d be even better off. She can presumably shift any given bit of her galaxy between quantum and normal computation mode, but it doesn’t help her. If GOCW is in normal computation mode, her computations are deterministic and thus not multiplied by MWI. And if she’s in quantum mode, she only gets a multiplier proportional to an exponential of the number of qubits she’s using. In order to get the full multiplier that ordinary made-of-matter you are getting naturally, she has to simulate everything about the quantum wave function of every particle in you and your environment. We don’t know how efficient her algorithms are for doing so, but presumably it takes her more than a gram of computronium to simulate a gram of normal matter at that level of detail, and arguably much more. Obviously she can do hybrid quantum/conventional tricks, but there’s nothing about the hybridization itself that increases her multiplier.
So you’re saying, what if MWI is just a local phenomenon to our world, and doesn’t apply to these 3^^^^3 other simulations that the matrix lords are working with, because they aren’t quantum in the first place?
I agree that in the case of a mere galaxy of computronium, it’s much less credible that one can simulate an extremely high number of people complex enough that we wouldn’t be able to prove that we aren’t them. In the former case, we’ve got much less information.
I didn’t downvote, but I couldn’t see what MWI actually changed about the problem. The simulations are also subject to MWI, so you’re multiplying both sides of the comparison by the same large number. Hmm. Unless the simulations are implemented on quantum computers, which would minimize the branching. It’s not clear to me that you can mimic the algorithm without having the same degree of total decoherence.
No, the simulations are not subject to MWI. I mean, we don’t know what “matrix lord physics” is, but we have his word that there are 3^^^^3 individuals inside those simulations, and presumably that’s after any MWI effects are factored in.
If instead of Matrix Lord, we were just facing Galaxy Of Computronium Woman, we’d be even better off. She can presumably shift any given bit of her galaxy between quantum and normal computation mode, but it doesn’t help her. If GOCW is in normal computation mode, her computations are deterministic and thus not multiplied by MWI. And if she’s in quantum mode, she only gets a multiplier proportional to an exponential of the number of qubits she’s using. In order to get the full multiplier that ordinary made-of-matter you are getting naturally, she has to simulate everything about the quantum wave function of every particle in you and your environment. We don’t know how efficient her algorithms are for doing so, but presumably it takes her more than a gram of computronium to simulate a gram of normal matter at that level of detail, and arguably much more. Obviously she can do hybrid quantum/conventional tricks, but there’s nothing about the hybridization itself that increases her multiplier.
So you’re saying, what if MWI is just a local phenomenon to our world, and doesn’t apply to these 3^^^^3 other simulations that the matrix lords are working with, because they aren’t quantum in the first place?
I agree that in the case of a mere galaxy of computronium, it’s much less credible that one can simulate an extremely high number of people complex enough that we wouldn’t be able to prove that we aren’t them. In the former case, we’ve got much less information.