So far as I know, it is not the case that OpenAI had a slower-but-equally-functional version of GPT4 many months before announcement/release. What they did have is GPT4 itself, months before; but they did not have a slower version. They didn’t release a substantially distilled version. For example, the highest estimate I’ve seen is that they trained a 2-trillion-parameter model. And the lowest estimate I’ve seen is that they released a 200-billion-parameter model. If both are true, then they distilled 10x… but it’s much more likely that only one is true, and that they released what they trained, distilling later. (The parameter count is proportional to the inference cost.)
Previously, delays in release were believed to be about post-training improvements (e.g. RLHF) or safety testing. Sure, there were possibly mild infrastructure optimizations before release, but mostly to scale to many users; the models didn’t shrink.
This is for language models. For alphazero, I want to point out that it was announced 6 years ago (infinity by AI scale), and from my understanding we still don’t have a 1000x faster version, despite much interest in one.
For alphazero, I want to point out that it was announced 6 years ago (infinity by AI scale), and from my understanding we still don’t have a 1000x faster version, despite much interest in one.
I don’t know the details, but whatever the NN thing (derived from Lc0, a clone of AlphaZero) inside current Stockfish is can play on a laptop GPU.
And even if AlphaZero derivatives didn’t gain 3OOMs by themselves it doesn’t update me much that that’s something particularly hard. Google itself has no interest at improving it further and just moved on to MuZero, to AlphaFold etc.
The NN thing inside stockfish is called the NNUE, and it is a small neural net used for evaluation (no policy head for choosing moves). The clever part of it is that it is “efficiently updatable” (i.e. if you’ve computed the evaluation of one position, and now you move a single piece, getting the updated evaluation for the new position is cheap). This feature allows it to be used quickly with CPUs; stockfish doesn’t really use GPUs normally (I think this is because moving the data on/off the GPU is itself too slow! Stockfish wants to evaluate 10 million nodes per second or something.)
This NNUE is not directly comparable to alphazero and isn’t really a descendant of it (except in the sense that they both use neural nets; but as far as neural net architectures go, stockfish’s NNUE and alphazero’s policy network are just about as different as they could possibly be.)
I don’t think it can be argued that we’ve improved 1000x in compute over alphazero’s design, and I do think there’s been significant interest in this (e.g. MuZero was an attempt at improving alphazero, the chess and Go communities coded up Leela, and there’s been a bunch of effort made to get better game playing bots in general).
My understanding when I last looked into it was that the efficient updating of the NNUE basically doesn’t matter, and what really matters for its performance and CPU-runnability is its small size.
So far as I know, it is not the case that OpenAI had a slower-but-equally-functional version of GPT4 many months before announcement/release. What they did have is GPT4 itself, months before; but they did not have a slower version. They didn’t release a substantially distilled version. For example, the highest estimate I’ve seen is that they trained a 2-trillion-parameter model. And the lowest estimate I’ve seen is that they released a 200-billion-parameter model. If both are true, then they distilled 10x… but it’s much more likely that only one is true, and that they released what they trained, distilling later. (The parameter count is proportional to the inference cost.)
Previously, delays in release were believed to be about post-training improvements (e.g. RLHF) or safety testing. Sure, there were possibly mild infrastructure optimizations before release, but mostly to scale to many users; the models didn’t shrink.
This is for language models. For alphazero, I want to point out that it was announced 6 years ago (infinity by AI scale), and from my understanding we still don’t have a 1000x faster version, despite much interest in one.
I don’t know the details, but whatever the NN thing (derived from Lc0, a clone of AlphaZero) inside current Stockfish is can play on a laptop GPU.
And even if AlphaZero derivatives didn’t gain 3OOMs by themselves it doesn’t update me much that that’s something particularly hard. Google itself has no interest at improving it further and just moved on to MuZero, to AlphaFold etc.
The NN thing inside stockfish is called the NNUE, and it is a small neural net used for evaluation (no policy head for choosing moves). The clever part of it is that it is “efficiently updatable” (i.e. if you’ve computed the evaluation of one position, and now you move a single piece, getting the updated evaluation for the new position is cheap). This feature allows it to be used quickly with CPUs; stockfish doesn’t really use GPUs normally (I think this is because moving the data on/off the GPU is itself too slow! Stockfish wants to evaluate 10 million nodes per second or something.)
This NNUE is not directly comparable to alphazero and isn’t really a descendant of it (except in the sense that they both use neural nets; but as far as neural net architectures go, stockfish’s NNUE and alphazero’s policy network are just about as different as they could possibly be.)
I don’t think it can be argued that we’ve improved 1000x in compute over alphazero’s design, and I do think there’s been significant interest in this (e.g. MuZero was an attempt at improving alphazero, the chess and Go communities coded up Leela, and there’s been a bunch of effort made to get better game playing bots in general).
My understanding when I last looked into it was that the efficient updating of the NNUE basically doesn’t matter, and what really matters for its performance and CPU-runnability is its small size.