I was curious what some of this looked like, so I graphed it, using the dates you specifically called out probabilities. For simplicity, I assumed constant probability within each range (though I know you said this doesn’t correspond to your actual views). Here’s what I got for cumulative probability:
And here’s the corresponding probabilities of TAI being developed per specific year:
The dip between 2026 and 2030 seems unjustified to me. (I also think the huge drop from 2040-2050 is too aggressive, as even if we expect a plateauing of compute/another AI winter/etc, I don’t think we can be super confident exactly when that would happen, but this drop seems more defensible to me than the one in the late 2020s.)
If we instead put 5% for 2026, here’s what we get:
which seems more intuitively defensible to me. I think this difference may be important, as even shift of small numbers of years like this could be action-relevant when we’re talking about very short timelines (of course, you could also get something reasonable-seeming by shifting up the probabilities of TAI in the 2026-2030 range).
I’d also like to point out that your probabilities would imply that if TAI is not developed by 2036, there would be an implied 23% conditional chance of it then being developed in the subsequent 4 years ((50%-35%)/(100%-35%)), which also strikes me as quite high from where we’re now standing.
Great post!
I was curious what some of this looked like, so I graphed it, using the dates you specifically called out probabilities. For simplicity, I assumed constant probability within each range (though I know you said this doesn’t correspond to your actual views). Here’s what I got for cumulative probability:
And here’s the corresponding probabilities of TAI being developed per specific year:
The dip between 2026 and 2030 seems unjustified to me. (I also think the huge drop from 2040-2050 is too aggressive, as even if we expect a plateauing of compute/another AI winter/etc, I don’t think we can be super confident exactly when that would happen, but this drop seems more defensible to me than the one in the late 2020s.)
If we instead put 5% for 2026, here’s what we get:
which seems more intuitively defensible to me. I think this difference may be important, as even shift of small numbers of years like this could be action-relevant when we’re talking about very short timelines (of course, you could also get something reasonable-seeming by shifting up the probabilities of TAI in the 2026-2030 range).
I’d also like to point out that your probabilities would imply that if TAI is not developed by 2036, there would be an implied 23% conditional chance of it then being developed in the subsequent 4 years ((50%-35%)/(100%-35%)), which also strikes me as quite high from where we’re now standing.