Chaos provides value both by telling certain engineers where not to look for solutions to their problems, and by getting their bosses off their back about it. That’s a significant value add, but short of what I was hoping for when I started looking into Chaos.
I don’t think it’s a value-add, because this sort of proof-by-intimidation abuse is how chaos theory gets used in many places, such as here on Lesswrong as well, not just engineers fighting their managers. Remember the proof that humans can’t get high scores playing pinball because ‘chaos theory’? It’s just an indiscriminate rhetorical weapon. It is not true in the case of playing pinball, it is probably not true of trebuchets in general (as opposed to cheap simple trebuchets constructed for contests or the Third World), and I would be surprised if all of those 6 successful manipulations were the valid exceptions. It is similar to the pervasive abuse of Godel or the Halting theorem; you doubtless could successfully convince some managers to not bother with things like typechecking or unit-tests or formal proofs because “Turing proved it is impossible to prove things about arbitrary programs” etc, but that is not a good thing, it is a bad thing.
I don’t have any experience with actual situations where this could be relevant, but it does feel like you’re overly focusing on the failure case where everyone is borderline incompetent and doing arbitrary things (which of course happens on less wrong sometimes, since the variation here is quite large!).
There’s clearly a huge upside to being able to spot when you’re trying to do something that’s impossible for theoretical reasons, and being extra sceptical in these situations. (E.g. someone trying to construct a perpetual motion machine). I’m open to the argument that there’s a lot to be wished for in the way people in practice apply these things.
Can you point to where the post says this? Because I read it as saying “It is impossible to predict a game of pinball for more than 12 bounces in the future” and “Professional pinball players try to avoid the parts of the board where the motion is chaotic.”
See my comment. The problem with the post is revealed in the fourth sentence:
To demonstrate how chaos theory imposes some limits on the skill of an arbitrary intelligence, I will also look at a game: pinball.
Note that predicting a ball is not at all the same thing as skill in manipulating a ball. It’s just a giant non sequitur being slipped in before he begins the math. Which is why he is 100% wrong when he concludes
This is not a problem that is solvable by applying more cognitive effort.
It totally is solvable. The ‘cognitive effort’ here is ‘git gud at pinball, scrub, and stop making excuses for losing’, and as he admits in the footnote he didn’t include in the LW version, in real life, when adequately incentivized to win rather than find excuses involving ‘well, chaos theory shows you can’t predict ball bounces more than n bounces out’, pinball pros learn how to win and rack up high scores despite ‘muh chaos’.
And that is why I don’t believe your anecdotal survey responses imply anything good. I think that several or all of those cases, if we were able to investigate them adequately, would turn out to be similar to this pinball essay: a lot of browbeating intimidation-by-math, possibly completely valid insofar as it went, but ultimately, proving an irrelevant claim and the problem in fact soluble.
and as he admits in the footnote he didn’t include in the LW version, in real life, when adequately incentivized to win rather than find excuses involving ‘well, chaos theory shows you can’t predict ball bounces more than n bounces out’, pinball pros learn how to win and rack up high scores despite ‘muh chaos’.
I was confused about this part of your comment because the post directly talks about this in the conclusion.
The strategy typically is to catch the ball with the flippers, then to carefully hit the balls so that it takes a particular ramp which scores a lot of points and then returns the ball to the flippers. Professional pinball players try to avoid the parts of the board where the motion is chaotic.
The “off-site footnote” you’re referring to seems to just be saying “The result is a pretty boring game. However, some of these ramps release extra balls after you have used them a few times. My guess is that this is the game designer trying to reintroduce chaos to make the game more interesting again.” which is just a minor detail. AFAICT pros could score lots of points even without the extra balls.
(I’m leaving this comment here because I was getting confused about whether there had been major edits to the post, since the relevant content is currently in the conclusion and not the footnote. I was digging through the wayback machine and didn’t see any major edits. So trying to save other people from the same confusion.)
The “off-site footnote” you’re referring to seems to just be saying “The result is a pretty boring game. However, some of these ramps release extra balls after you have used them a few times. My guess is that this is the game designer trying to reintroduce chaos to make the game more interesting again.” which is just a minor detail. AFAICT pros could score lots of points even without the extra balls.
(I’m leaving this comment here because I was getting confused about whether there had been major edits to the post, since the relevant content is currently in the conclusion and not the footnote. I was digging through the wayback machine and didn’t see any major edits. So trying to save other people from the same confusion.)
Absolutely right! The main problem is how we use the theories. They need to be applied in a way that people can understand, not confused or confounded
I don’t think it’s a value-add, because this sort of proof-by-intimidation abuse is how chaos theory gets used in many places, such as here on Lesswrong as well, not just engineers fighting their managers. Remember the proof that humans can’t get high scores playing pinball because ‘chaos theory’? It’s just an indiscriminate rhetorical weapon. It is not true in the case of playing pinball, it is probably not true of trebuchets in general (as opposed to cheap simple trebuchets constructed for contests or the Third World), and I would be surprised if all of those 6 successful manipulations were the valid exceptions. It is similar to the pervasive abuse of Godel or the Halting theorem; you doubtless could successfully convince some managers to not bother with things like typechecking or unit-tests or formal proofs because “Turing proved it is impossible to prove things about arbitrary programs” etc, but that is not a good thing, it is a bad thing.
I don’t have any experience with actual situations where this could be relevant, but it does feel like you’re overly focusing on the failure case where everyone is borderline incompetent and doing arbitrary things (which of course happens on less wrong sometimes, since the variation here is quite large!). There’s clearly a huge upside to being able to spot when you’re trying to do something that’s impossible for theoretical reasons, and being extra sceptical in these situations. (E.g. someone trying to construct a perpetual motion machine). I’m open to the argument that there’s a lot to be wished for in the way people in practice apply these things.
Can you point to where the post says this? Because I read it as saying “It is impossible to predict a game of pinball for more than 12 bounces in the future” and “Professional pinball players try to avoid the parts of the board where the motion is chaotic.”
See my comment. The problem with the post is revealed in the fourth sentence:
Note that predicting a ball is not at all the same thing as skill in manipulating a ball. It’s just a giant non sequitur being slipped in before he begins the math. Which is why he is 100% wrong when he concludes
It totally is solvable. The ‘cognitive effort’ here is ‘git gud at pinball, scrub, and stop making excuses for losing’, and as he admits in the footnote he didn’t include in the LW version, in real life, when adequately incentivized to win rather than find excuses involving ‘well, chaos theory shows you can’t predict ball bounces more than n bounces out’, pinball pros learn how to win and rack up high scores despite ‘muh chaos’.
And that is why I don’t believe your anecdotal survey responses imply anything good. I think that several or all of those cases, if we were able to investigate them adequately, would turn out to be similar to this pinball essay: a lot of browbeating intimidation-by-math, possibly completely valid insofar as it went, but ultimately, proving an irrelevant claim and the problem in fact soluble.
I was confused about this part of your comment because the post directly talks about this in the conclusion.
The “off-site footnote” you’re referring to seems to just be saying “The result is a pretty boring game. However, some of these ramps release extra balls after you have used them a few times. My guess is that this is the game designer trying to reintroduce chaos to make the game more interesting again.” which is just a minor detail. AFAICT pros could score lots of points even without the extra balls.
(I’m leaving this comment here because I was getting confused about whether there had been major edits to the post, since the relevant content is currently in the conclusion and not the footnote. I was digging through the wayback machine and didn’t see any major edits. So trying to save other people from the same confusion.)
Absolutely right! The main problem is how we use the theories. They need to be applied in a way that people can understand, not confused or confounded