Unfortunately, no. It’s not enough to show that humans play some game using a simple control algorithm that happens to work for it.
It doesn’t “just happen” to work. It works for the same reason that, say, a chemist’s description of a chemical reaction works: because the description describes what is actually happening.
Besides, according to the philosophy you expressed, all that matters in compressing the data. A few numbers to compress with high fidelity an arbitrarily large amount of data is pretty good, I would have thought. ETA: Compare how just one number: local gravitational strength, suffices to predict the path of a thrown rock, given the right theory.
Experiments based on PCT ideas routinely see correlations above 0.99. This is absolutely unheard of in psychology. Editors think results like that can’t possibly be true. But that is the sort of result you get when you are measuring real things. When you are doing real measurements, you don’t even bother to measure correlations, unless you have to talk in the language of people whose methods are so bad that they are always dealing with statistical fog.
You claimed that human behavior can be usefully described as tweaking output to control some observed variable. What you would need to show, then, is this model applied to behavior for which there are alternate, existing explanations.
The alternate, existing explanations are worth no more than alchemical theories of four elements. It’s possible to go back and look at the alchemists’ accounts of their experiments, but there’s really not much point except historical interest. They were asking the wrong questions and making the wrong observations, using wrong theories. Even if you can work out what someone was doing, it isn’t going to cast light on chemistry, only on history.
For example, how does the controller model fit in with mate selection? When I seek a mate, what is the reference that I’m tracking? How does my sensory data get converted into a format that compares with the reference? What is the output?
You’re demanding that the new point of view instantly explain everything. But FWIW, when you seek a mate, the reference is, of course, having a mate. You perceive that you do not have one, and take such steps as you think appropriate to find one. If you want a detailed acount right down to the level of nerve impulses of how that all happens—well, anyone who could do that would know how to build a strong AI. Nobody knows that, yet.
A theory isn’t a machine that will give you answers for free. ETA: Newtonian mechanics won’t hand you the answer to the N-body problem on a plate.
Or in the more general case: what is the default reference that I’m tracking? What am I tracking when I decide to go to work every day, and how do I know I’ve gotten to work?
You’re demanding that the new point of view instantly explain everything.
I’m demanding that it explain exactly what you claimed it could explain: behavior!
FWIW, when you seek a mate, the reference is, of course, having a mate. You perceive that you do not have one, and take such steps as you think appropriate to find one. If you want a detailed acount right down to the level of nerve impulses of how that all happens—well, anyone who could do that would know how to build a strong AI. Nobody knows that, yet.
Yep, that confirms exactly what I was expecting: you’ve just relabeled the problem; you haven’t simplified it. Your model tells me nothing except “this is what you could do, once you did all the real work in understanding this phenomenon, which you got some other way”.
A theory isn’t a machine that will give you answers for free. ETA: Newtonian mechanics won’t hand you the answer to the N-body problem on a plate.
Poor comparison. Newtonian mechanics doesn’t give me a an answer to the general n-body problem, but it gives me more than enough to generate a numerical solution to any specific n-body problem.
Your model isn’t even in the same league. It just says the equivalent of, “Um, the bodies move in a, you know, gravitational-like manner, they figure out where gravity wants them to go, and they bring that all, into effect.”
It feels like an explanation, but it isn’t. The scientific answer would look more like, “The net acceleration any body experiences is equal to the vector sum of the forces on the body obtained from the law of gravitation, divided by its mass. To plot the paths, start with the initial positions and velocities, find the accelerations, and then up date the positions and start over.”
It doesn’t “just happen” to work. It works for the same reason that, say, a chemist’s description of a chemical reaction works: because the description describes what is actually happening.
Besides, according to the philosophy you expressed, all that matters in compressing the data. A few numbers to compress with high fidelity an arbitrarily large amount of data is pretty good, I would have thought. ETA: Compare how just one number: local gravitational strength, suffices to predict the path of a thrown rock, given the right theory.
Experiments based on PCT ideas routinely see correlations above 0.99. This is absolutely unheard of in psychology. Editors think results like that can’t possibly be true. But that is the sort of result you get when you are measuring real things. When you are doing real measurements, you don’t even bother to measure correlations, unless you have to talk in the language of people whose methods are so bad that they are always dealing with statistical fog.
The alternate, existing explanations are worth no more than alchemical theories of four elements. It’s possible to go back and look at the alchemists’ accounts of their experiments, but there’s really not much point except historical interest. They were asking the wrong questions and making the wrong observations, using wrong theories. Even if you can work out what someone was doing, it isn’t going to cast light on chemistry, only on history.
You’re demanding that the new point of view instantly explain everything. But FWIW, when you seek a mate, the reference is, of course, having a mate. You perceive that you do not have one, and take such steps as you think appropriate to find one. If you want a detailed acount right down to the level of nerve impulses of how that all happens—well, anyone who could do that would know how to build a strong AI. Nobody knows that, yet.
A theory isn’t a machine that will give you answers for free. ETA: Newtonian mechanics won’t hand you the answer to the N-body problem on a plate.
See pjeby’s reply. He gets it.
I’m demanding that it explain exactly what you claimed it could explain: behavior!
Yep, that confirms exactly what I was expecting: you’ve just relabeled the problem; you haven’t simplified it. Your model tells me nothing except “this is what you could do, once you did all the real work in understanding this phenomenon, which you got some other way”.
Poor comparison. Newtonian mechanics doesn’t give me a an answer to the general n-body problem, but it gives me more than enough to generate a numerical solution to any specific n-body problem.
Your model isn’t even in the same league. It just says the equivalent of, “Um, the bodies move in a, you know, gravitational-like manner, they figure out where gravity wants them to go, and they bring that all, into effect.”
It feels like an explanation, but it isn’t. The scientific answer would look more like, “The net acceleration any body experiences is equal to the vector sum of the forces on the body obtained from the law of gravitation, divided by its mass. To plot the paths, start with the initial positions and velocities, find the accelerations, and then up date the positions and start over.”