There are infinitely many ways to find utility functions that represents preferences on outcomes, for example if outcomes are monetary than any increasing function is equivalent on outcomes but not when you try to extend it to distributions and lotteries with the expected value. I wander if given a specific function u(...) on every outcome you can also chose “rational” preferences (as in the theorem) according to some other operator on the distributions that is not the average, for example what about the L^p norm or the sup of the distribution (if they are continuous)? Or is the expected value the special unique operator that have the propety stated by the VN-M theorem?
Itt seems to me that it is actually easy to define a function $u’(...)>=0$ such that the preferences are represented by $E(u’^2)$ and not by $E(u’)$: just take u’=sqrt(u), and you can do the same for any value of the exponent, so the expectation does not play a special role in the theorem, you can replace it with any $L^p$ norm.
There are infinitely many ways to find utility functions that represents preferences on outcomes, for example if outcomes are monetary than any increasing function is equivalent on outcomes but not when you try to extend it to distributions and lotteries with the expected value.
I wander if given a specific function u(...) on every outcome you can also chose “rational” preferences (as in the theorem) according to some other operator on the distributions that is not the average, for example what about the L^p norm or the sup of the distribution (if they are continuous)?
Or is the expected value the special unique operator that have the propety stated by the VN-M theorem?
Itt seems to me that it is actually easy to define a function $u’(...)>=0$ such that the preferences are represented by $E(u’^2)$ and not by $E(u’)$: just take u’=sqrt(u), and you can do the same for any value of the exponent, so the expectation does not play a special role in the theorem, you can replace it with any $L^p$ norm.