If this approach worked, it would be very elegant, because it would turn out that quantum mechanics is a microscopic side effect of general relativity. It would require the matter fields to exhibit microscopic violations of the energy conditions which normally prevent wormholes and time machines, but this is not impossible, there are many simple models in which the energy conditions are violated.
Energy conditions (well, the topological censorship, really) in classical GR prevent only traversable wormholes, and only in 3+1 dimensions. Non-simply connected spacetimes are otherwise allowed in a covariant formulation of GR, though they do not arise in an initial value problem with a simply connected spacelike initial surface.
Additionally, changing one’s past is absolutely incompatible with GR, as there is a unique metric tensor associated with each spacetime point, not two or more different ones, one for each go through a closed timelike curve. The only way time travel can happen in GR is by unwrapping these time loops into some universal cover. And there is a heavy price to pay for that, but that discussion is straying too far afield, so feel free to PM me if you want to talk further.
Energy conditions (well, the topological censorship, really) in classical GR prevent only traversable wormholes, and only in 3+1 dimensions. Non-simply connected spacetimes are otherwise allowed in a covariant formulation of GR, though they do not arise in an initial value problem with a simply connected spacelike initial surface.
Additionally, changing one’s past is absolutely incompatible with GR, as there is a unique metric tensor associated with each spacetime point, not two or more different ones, one for each go through a closed timelike curve. The only way time travel can happen in GR is by unwrapping these time loops into some universal cover. And there is a heavy price to pay for that, but that discussion is straying too far afield, so feel free to PM me if you want to talk further.