Okay, I think I get it. I was initially thinking that the probabilities of the relationship between MAD and reducing risk being negative, nothing, weak, strong, whatever, would all be similar. If you assume that the probability that we all die without MAD is 50%, and each coin represents a possible probability of death with MAD, then I would have put in one 1% coin, one 2% coin, and so on up to 100. That would give us a distribution just like gwern’s given graph.
You’re saying that it is very likely that there is no relationship at all, and while surviving provides evidence of a positive relationship over a negative one (if we ignore anthropic stuff, and we probably shouldn’t), it doesn’t change the probability that there is no relationship. So you’d have significantly more 50% coins than 64% coins or 37% coins to draw from. The updates would look the same, but with only one data point, your best guess is that there is no relationship. Is that what you’re saying?
So then the difference is all about prior probabilities, yes? If you have two variables that coorelated one time, and that’s all the experimenting that you get to do, how likely is it that they have a positive relationship, and how likely is it that it was a coincidence? I… don’t know. I’d have to think about it more.
Okay, I think I get it. I was initially thinking that the probabilities of the relationship between MAD and reducing risk being negative, nothing, weak, strong, whatever, would all be similar. If you assume that the probability that we all die without MAD is 50%, and each coin represents a possible probability of death with MAD, then I would have put in one 1% coin, one 2% coin, and so on up to 100. That would give us a distribution just like gwern’s given graph.
You’re saying that it is very likely that there is no relationship at all, and while surviving provides evidence of a positive relationship over a negative one (if we ignore anthropic stuff, and we probably shouldn’t), it doesn’t change the probability that there is no relationship. So you’d have significantly more 50% coins than 64% coins or 37% coins to draw from. The updates would look the same, but with only one data point, your best guess is that there is no relationship. Is that what you’re saying?
So then the difference is all about prior probabilities, yes? If you have two variables that coorelated one time, and that’s all the experimenting that you get to do, how likely is it that they have a positive relationship, and how likely is it that it was a coincidence? I… don’t know. I’d have to think about it more.