appreciate you sharing your impression of the post. It’s definitely valuable for us to understand how the post was received, and we’ll be reflecting on it for future write-ups.
1) We agree it’s worth taking into account aspects of an organization other than their output. Part of our skepticism towards Conjecture – and we should have made this more explicit in our original post (and will be updating it) – is the limited research track record of their staff, including their leadership. By contrast, even if we accept for the sake of argument that ARC has produced limited output, Paul Christiano has a clear track record of producing useful conceptual insights (e.g. Iterated Distillation and Amplification) as well as practical advances (e.g. Deep RL From Human Preferences) prior to starting work at ARC. We’re not aware of any equally significant advances from Connor or other key staff members at Conjecture; we’d be interested to hear if you have examples of their pre-Conjecture output you find impressive.
We’re not particularly impressed by Conjecture’s process, although it’s possible we’d change our mind if we knew more about it. Maintaining high velocity in research is certainly a useful component, but hardly sufficient. The Builder/Breaker method proposed by ARC feels closer to a complete methodology. But this doesn’t feel like the crux for us: if Conjecture copied ARC’s process entirely, we’d still be much more excited about ARC (per-capita). Research productivity is a product of a large number of factors, and explicit process is an important but far from decisive one.
In terms of the explicit comparison with ARC, we would like to note that ARC Theory’s team size is an order of magnitude smaller than Conjecture. Based on ARC’s recent hiring post, our understanding is the theory team consists of just three individuals: Paul Christiano, Mark Xu and Jacob Hilton. If ARC had a team ten times larger and had spent close to $10 mn, then we would indeed be disappointed if there were not more concrete wins.
2) Thanks for the concrete examples, this really helps tease apart our disagreement.
We are overall glad that the Simulators post was written. Our view is that it could have been much stronger had it been clearer which claims were empirically supported versus hypotheses. Continuing the comparison with ARC, we found ELK to be substantially clearer and a deeper insight. Admittedly ELK is one of the outputs people in the TAIS community are most excited by so this is a high bar.
The stuff on SVDs and sparse coding [...] was a valuable contribution. I’d still say it was less influential than e.g. toy models of superposition or causal scrubbing but neither of these were done by like 3 people in two weeks.
This sounds similar to our internal evaluation. We’re a bit confused by why “3 people in two weeks” is the relevant reference class. We’d argue the costs of Conjecture’s “misses” need to be accounted for, not just their “hits”. Redwood’s team size and budget are comparable to that of Conjecture, so if you think that causal scrubbing is more impressive than Conjecture’s other outputs, then it sounds like you agree with us that Redwood was more impressive than Conjecture (unless you think the Simulator’s post is head and shoulders above Redwood’s other output)?
Thanks for sharing the data point this influenced independent researchers. That’s useful to know, and updates us positively. Are you excited by those independent researchers’ new directions? Is there any output from those researchers you’d suggest we review?
3) We remain confident in our sources regarding Conjecture’s discussion with VCs, although it’s certainly conceivable that Conjecture was more open with some VCs than others. To clarify, we are not claiming that Connor or others at Conjecture did not mention anything about their alignment plans or interest in x-risk to VCs (indeed, this would be a barely tenable position for them given their public discussion of these plans), simply that their pitch gave the impression that Conjecture was primarily focused on developing products. It’s reasonable for you to be skeptical of this if your sources at Conjecture disagree; we would be interested to know how close to the negotiations those staff were, although understand this may not be something you can share.
4) We think your point is reasonable. We plan to reflect this recommendation and will reply here when we have an update.
5) This certainly depends on what “general industry” refers to: a research engineer at Conjecture might well be better for ML skill-building than, say, being a software engineer at Walmart. But we would expect ML teams at top tech companies, or working with relevant professors, to be significantly better for skill-building. Generally we expect quality of mentorship to be one of the most important components of individuals developing as researchers and engineers. The Conjecture team is stretched thin as a result of rapid scaling, and had few experienced researchers or engineers on staff in the first place. By contrast, ML teams at top tech companies will typically have a much higher fraction of senior researchers and engineers, and professors at leading universities comprise some of the best researchers in the field. We’d be curious to hear your case for Conjecture as skill building; without that it’s hard to identify where our main disagreement lies.
(cross-posted from EAF)
appreciate you sharing your impression of the post. It’s definitely valuable for us to understand how the post was received, and we’ll be reflecting on it for future write-ups.
1) We agree it’s worth taking into account aspects of an organization other than their output. Part of our skepticism towards Conjecture – and we should have made this more explicit in our original post (and will be updating it) – is the limited research track record of their staff, including their leadership. By contrast, even if we accept for the sake of argument that ARC has produced limited output, Paul Christiano has a clear track record of producing useful conceptual insights (e.g. Iterated Distillation and Amplification) as well as practical advances (e.g. Deep RL From Human Preferences) prior to starting work at ARC. We’re not aware of any equally significant advances from Connor or other key staff members at Conjecture; we’d be interested to hear if you have examples of their pre-Conjecture output you find impressive.
We’re not particularly impressed by Conjecture’s process, although it’s possible we’d change our mind if we knew more about it. Maintaining high velocity in research is certainly a useful component, but hardly sufficient. The Builder/Breaker method proposed by ARC feels closer to a complete methodology. But this doesn’t feel like the crux for us: if Conjecture copied ARC’s process entirely, we’d still be much more excited about ARC (per-capita). Research productivity is a product of a large number of factors, and explicit process is an important but far from decisive one.
In terms of the explicit comparison with ARC, we would like to note that ARC Theory’s team size is an order of magnitude smaller than Conjecture. Based on ARC’s recent hiring post, our understanding is the theory team consists of just three individuals: Paul Christiano, Mark Xu and Jacob Hilton. If ARC had a team ten times larger and had spent close to $10 mn, then we would indeed be disappointed if there were not more concrete wins.
2) Thanks for the concrete examples, this really helps tease apart our disagreement.
We are overall glad that the Simulators post was written. Our view is that it could have been much stronger had it been clearer which claims were empirically supported versus hypotheses. Continuing the comparison with ARC, we found ELK to be substantially clearer and a deeper insight. Admittedly ELK is one of the outputs people in the TAIS community are most excited by so this is a high bar.
This sounds similar to our internal evaluation. We’re a bit confused by why “3 people in two weeks” is the relevant reference class. We’d argue the costs of Conjecture’s “misses” need to be accounted for, not just their “hits”. Redwood’s team size and budget are comparable to that of Conjecture, so if you think that causal scrubbing is more impressive than Conjecture’s other outputs, then it sounds like you agree with us that Redwood was more impressive than Conjecture (unless you think the Simulator’s post is head and shoulders above Redwood’s other output)?
Thanks for sharing the data point this influenced independent researchers. That’s useful to know, and updates us positively. Are you excited by those independent researchers’ new directions? Is there any output from those researchers you’d suggest we review?
3) We remain confident in our sources regarding Conjecture’s discussion with VCs, although it’s certainly conceivable that Conjecture was more open with some VCs than others. To clarify, we are not claiming that Connor or others at Conjecture did not mention anything about their alignment plans or interest in x-risk to VCs (indeed, this would be a barely tenable position for them given their public discussion of these plans), simply that their pitch gave the impression that Conjecture was primarily focused on developing products. It’s reasonable for you to be skeptical of this if your sources at Conjecture disagree; we would be interested to know how close to the negotiations those staff were, although understand this may not be something you can share.
4) We think your point is reasonable. We plan to reflect this recommendation and will reply here when we have an update.
5) This certainly depends on what “general industry” refers to: a research engineer at Conjecture might well be better for ML skill-building than, say, being a software engineer at Walmart. But we would expect ML teams at top tech companies, or working with relevant professors, to be significantly better for skill-building. Generally we expect quality of mentorship to be one of the most important components of individuals developing as researchers and engineers. The Conjecture team is stretched thin as a result of rapid scaling, and had few experienced researchers or engineers on staff in the first place. By contrast, ML teams at top tech companies will typically have a much higher fraction of senior researchers and engineers, and professors at leading universities comprise some of the best researchers in the field. We’d be curious to hear your case for Conjecture as skill building; without that it’s hard to identify where our main disagreement lies.