I’d agree that the bits of output are not independent in some physical sense. But they’re definitely independent in my mind! If I hear that the 100th binary digit of pi is 1, then my subjective probability over the 101st digit does not update at all, and remains at 0.5/0.5. So this still feels like a frequentism/Bayesianism thing to me.
Re: the modified experiment about random strings, you say that “To get the string of random bits we have to sample a coin flip, and then make two copies of the outcome”. But there’s nothing preventing the universe from simply containing to copies of the same random string, created causally independently. But that’s also vanishingly unlikely as the string gets longer.
Yes I can flip two independent coins a finite number of times and get strings that appear to be correlated. But in the asymptotic limit the probability they are the same (or correlated at all) goes to zero. Hence, two causally unrelated things can appear dependent for finite sample sizes. But when we have infinite samples (which is the limit we assume when making statements about probabilities) we get P(a,b) = P(a)P(b).
I’d agree that the bits of output are not independent in some physical sense. But they’re definitely independent in my mind! If I hear that the 100th binary digit of pi is 1, then my subjective probability over the 101st digit does not update at all, and remains at 0.5/0.5. So this still feels like a frequentism/Bayesianism thing to me.
Re: the modified experiment about random strings, you say that “To get the string of random bits we have to sample a coin flip, and then make two copies of the outcome”. But there’s nothing preventing the universe from simply containing to copies of the same random string, created causally independently. But that’s also vanishingly unlikely as the string gets longer.
Yes I can flip two independent coins a finite number of times and get strings that appear to be correlated. But in the asymptotic limit the probability they are the same (or correlated at all) goes to zero. Hence, two causally unrelated things can appear dependent for finite sample sizes. But when we have infinite samples (which is the limit we assume when making statements about probabilities) we get P(a,b) = P(a)P(b).