Ultimately, all statistical correlations are due to casual influences.
As a regular LW reader who has never been that into causality, this reads as a blisteringly hot take to me.
You are right this is somewhat blistering, especially for this LW forum.
I would have been less controversial for the authors to say that ‘all statistical correlations can be modelled as casual influences’. Correlations between two observables can always be modelled as being caused by the causal dependence of both on the value of a certain third variable, which may (if the person making the model wants to) be defined as a hidden variable that cannot by definition be observed.
After is has been drawn up, such a causal model claiming that an observed statistical correlation is being caused by a causal dependency on a hidden variable might then be either confirmed or falsified, for certain values of confirmed or falsified that philosophers love to endlessly argue about, by 1) further observations or by 2) active experiment, an experiment where one does a causal intervention.
Pearl kind of leans towards 2) the active experiment route towards confirming or falsifying the model—deep down, one of the points Pearl makes is that experiments can be used to distinguish between correlation and causation, that this experimentalist route has been ignored too much by statisticians and Bayesian philosophers alike, and that this route has also been improperly maligned by the Cigarette industry and other merchants of doubt.
Another point Pearl makes is that Pearl causal models and Pearl counterfactuals are very useful of mathematical tools that could be used by ex-statisticians turned experimentalists when they try to understand, and/or make predictions about, nondeterministic systems with potentially hidden variables.
This latter point is mostly made by Pearl towards the medical community. But this point also applies to doing AI interpretability research.
When it comes to the more traditional software engineering and physical systems engineering communities, or the experimental physics community for that matter, most people in these communities intuitively understand Pearl’s point about the importance of doing causal intervention based experiments as being plain common sense. They understand this without ever having read the work or the arguments of Pearl first. These communities also use mathematical tools which are equivalent to using Pearl’s do() notation, usually without even knowing about this equivalence.
You are right this is somewhat blistering, especially for this LW forum.
I would have been less controversial for the authors to say that ‘all statistical correlations can be modelled as casual influences’. Correlations between two observables can always be modelled as being caused by the causal dependence of both on the value of a certain third variable, which may (if the person making the model wants to) be defined as a hidden variable that cannot by definition be observed.
After is has been drawn up, such a causal model claiming that an observed statistical correlation is being caused by a causal dependency on a hidden variable might then be either confirmed or falsified, for certain values of confirmed or falsified that philosophers love to endlessly argue about, by 1) further observations or by 2) active experiment, an experiment where one does a causal intervention.
Pearl kind of leans towards 2) the active experiment route towards confirming or falsifying the model—deep down, one of the points Pearl makes is that experiments can be used to distinguish between correlation and causation, that this experimentalist route has been ignored too much by statisticians and Bayesian philosophers alike, and that this route has also been improperly maligned by the Cigarette industry and other merchants of doubt.
Another point Pearl makes is that Pearl causal models and Pearl counterfactuals are very useful of mathematical tools that could be used by ex-statisticians turned experimentalists when they try to understand, and/or make predictions about, nondeterministic systems with potentially hidden variables.
This latter point is mostly made by Pearl towards the medical community. But this point also applies to doing AI interpretability research.
When it comes to the more traditional software engineering and physical systems engineering communities, or the experimental physics community for that matter, most people in these communities intuitively understand Pearl’s point about the importance of doing causal intervention based experiments as being plain common sense. They understand this without ever having read the work or the arguments of Pearl first. These communities also use mathematical tools which are equivalent to using Pearl’s do() notation, usually without even knowing about this equivalence.