Pretty much all of the recent ML systems are based on a utility function framework in a sense—they are trained to optimize an objective function. In terms of RL in particular, Deepmind’s Atari agent works pretty well, and builds on a history of successful practical RL agents that all are trained to optimize a ‘utility function’.
That said, for complex AGI, we probably need something more complex than current utility function frameworks—in the sense that you can’t reduce utility to an external reward score. The brain doesn’t appear to have a simple VNM single-axis utility concept, which is some indication that we may eventually drop that notion for complex AI. My conception of ‘utility function’ is loose, and could include whatever it is the brain is doing.
Pretty much all of the recent ML systems are based on a utility function framework in a sense—they are trained to optimize an objective function. In terms of RL in particular, Deepmind’s Atari agent works pretty well, and builds on a history of successful practical RL agents that all are trained to optimize a ‘utility function’.
That said, for complex AGI, we probably need something more complex than current utility function frameworks—in the sense that you can’t reduce utility to an external reward score. The brain doesn’t appear to have a simple VNM single-axis utility concept, which is some indication that we may eventually drop that notion for complex AI. My conception of ‘utility function’ is loose, and could include whatever it is the brain is doing.