The position of the apparatus has to be uncertain enough for you to be able to measure momentum (i.e. acceleration) precisely enough. It works out just fine to patterns being smeared, an interesting exercise to do mathematically though.
edit: didn’t see context, thought you were speaking of the regular double slit experiment. It still applies though.
With regards to the M1 I don’t quite understand the question as the spin is not an arrow that snaps from arbitrary orientation to parallel or anti-parallel. When it interacts with field, after the speed of light lag, there’s recoil.
Thanks for both the math and the intuitive explanation. Now I’m really curious what the right answer is to the physics question...
The position of the apparatus has to be uncertain enough for you to be able to measure momentum (i.e. acceleration) precisely enough. It works out just fine to patterns being smeared, an interesting exercise to do mathematically though.
edit: didn’t see context, thought you were speaking of the regular double slit experiment. It still applies though.
With regards to the M1 I don’t quite understand the question as the spin is not an arrow that snaps from arbitrary orientation to parallel or anti-parallel. When it interacts with field, after the speed of light lag, there’s recoil.