Read the caption below the figure. Neither red nor black vectors are velocities. Velocity values are denoted by points on the graph plane. The graph is in velocity space, not physical position space. The point 0 is the rest velocity, not the boat’s starting point. The point v_0 means the boat is moving with the wind. The vectors show how the pilot can change the velocity of a boat already moving at a given velocity; they’re acceleration vectors. Black vectors show accelerations possible with a pure-drag sail, red vectors are for a pure-lift sail.
Hmm. I think you’re right. Oops. You can sail downwind faster than the wind. I tried to write up a detailed proof of why it wouldn’t work, and it worked.
Read the caption below the figure. Neither red nor black vectors are velocities. Velocity values are denoted by points on the graph plane. The graph is in velocity space, not physical position space. The point 0 is the rest velocity, not the boat’s starting point. The point v_0 means the boat is moving with the wind. The vectors show how the pilot can change the velocity of a boat already moving at a given velocity; they’re acceleration vectors. Black vectors show accelerations possible with a pure-drag sail, red vectors are for a pure-lift sail.
Hmm. I think you’re right. Oops. You can sail downwind faster than the wind. I tried to write up a detailed proof of why it wouldn’t work, and it worked.