That’s still pretty much a revolution, a technology that could be used to tear apart planets. It just might take a bit longer than it takes in pulp sci-fi.
That looks like it’s missing the point to me. As one of my physics professors put it, “we already have grey goo. It’s called bacteria.” If living cells are as good as it gets, and e-coli didn’t tear apart the Earth, that’s solid evidence that nanosystems won’t tear apart the Earth.
I’d say life is very near to as good as it gets in terms of moving around chemical energy and using it to transform materials without something like a furnace or a foundry. You’re never going to eat rock, it’s already in a pretty damn low energy state that you cannot use for energy. Lithotrophic bacteria take advantage of redox differences between materials in rocks and live REALLY slowly so that new materials can leech in. You need to apply external energy to it in order to transform it. And as TheOtherDave has said, major alterations have happened but according to rather non-grey-goo patterns, and I suspect that the sorts of large-scale (as opposed to a side-branch that some energy takes) reactions will be more similar to biological transformations than to other possibilities.
I do think that life is not necessarily as good as it gets in terms of production of interesting bulk materials or photosynthesis though because in both these cases we can take advantage of non-self-replicating (on its own) infrastructure to help things along. Imagine a tank in which electrodes coming from photovoltaics (hopefully made of something better than the current heavy-metal doped silicon that could easily be recycled or degraded or something when they inevitably photodegrade) directly drive the redox reactions that fix CO2 from the air into organic molecules, followed by the chemistry required to take that feedstock and make it into an interesting material (along with an inevitable waste product or six). Dropper in the appropriate nutrient/vitamin-analogues and let it run, then purify it… I sometimes wonder if such a system might in the long run cause an ‘ecological’ disruption by being more efficient at creating materials from simple feedstocks than regular living plants and over very long timescales crowding them out, but then there is the issue of the non-self-replicating components which add a drag. Its a very interesting and potentially strange set of scenarios to be sure, but yeah not exactly grey goo (grey sprawl?).
EDIT: Percival Zhang’s research at Virginia Tech may provide a look at some of the ideas I find particularly interesting:
I’d be really surprised if evolution has done all it can. We simply don’t know enough to say what might turn up in the next million years or ten million years.
Bacteria, as well as all life, are stuck at a local maximum because evolution cannot find optimal solutions. Part of Drexler’s work is to estimate what the theoretical optimum solutions can do.
My statement “tear apart planets” assumed too much knowledge on the part of the reader. I thought it was frankly pretty obvious. If you have a controllable piece of industrial machinery that uses electricity and can process common elements into copies of itself, but runs no faster than bacteria, tearing apart a planet is a straightforward engineering excercise. I did NOT mean the machinery looked like bacteria in any way, merely that it could copy itself no faster than bacteria.
And by “copy itself”, what I really meant is that given supplies of feedstock (bacteria need sugar, water, and a few trace elements...our “nanomachinery” would need electricity, and a supply of intermediates for every element you are working with in a pure form) it can arrange that feedstock into thousands of complex machine parts, such that the machinery that is doing this process can make it’s own mass in atomically perfect products in an hour.
I’ll leave it up to you to figure out how you could use this tech to take a planet apart in a few decades. I don’t mean a sci-fi swarm of goo, I mean an organized effort resembling a modern mine or construction site.
It’s not clear to me what you mean by “tearing apart a planet.” Are you sifting out most of the platinum and launching it into orbit? Turning it into asteroids? Rendering the atmosphere inhospitable to humans?
Because I agree that the last is obviously possible, the first probably possible, the second probably impossible without ludicrous expenditures of effort. But it’s not clear to me that any of those are things which nanotechnology would be the core enabler on.
If you mean something like “reshape the planet in its image,” then again I think bacteria are a good judge of feasibility- because of the feedstock issues. As well, it eventually becomes more profitable to prey on the nanomachines around you than the inert environment, and so soon we have an ecosystem a biologist would find familiar.
Jumping to another description, we could talk about “revolutionary technologies,” like the Haber-Bosch process, which consumes about 1% of modern energy usage and makes agriculture and industry possible on modern scales. It’s a chemical trick that extracts nitrogen from its inert state in the atmosphere and puts it into more useful forms like ammonia. Nanotech may make many tricks like that much more available and ubiquitous, but I think it will be a somewhat small addition to current biological and chemical industries, rather than a total rewriting of those fields.
This problem is very easy to solve using induction. Base step : the minimum “replicative subunit”. For life, that is usually a single cell. For nano-machinery, it is somewhat larger. For the sake of penciling in numbers, suppose you need a robot with a scoop and basic mining tools, a vacuum chamber, a 3d printer able to melt metal powder, a nanomachinery production system that is itself composed of nanomachinery, a plasma furnace, a set of pipes and tubes and storage tanks for producing the feedstock the nanomachinery needs, and a power source.
All in all, you could probably fit a single subunit into the size and mass of a greyhound bus. One notable problem is that there’s enough complexity here that current software could probably not keep a factory like this running forever because eventually something would break that it doesn’t know how to fix.
Anyways, you set down this subunit on a planet. It goes to work. In an hour, the nanomachinery subunit has made a complete copy of itself. In somewhat more time, it has to manufacture a second copy of everything else. The nanomachinery subunit makes all the high end stuff—the sensors, the circuitry, the bearings—everything complex, while the 3d printer makes all the big parts.
Pessimistically, this takes a week. A greyhound bus is 9x45 feet, and there are 5.5e15 square feet on the earth’s surface. To cover the whole planet’s surface would therefore take 44 weeks.
Now you need to do something with all the enormous piles of waste material (stuff you cannot make more subunits with) and un-needed materials. So you reallocate some of the 1.3e13 robotic systems to build electromagnetic launchers to fling the material into orbit. You also need to dispose of the atmosphere at some point, since all that air causes each electromagnetic launch to lose energy as friction, and waste heat is a huge problem. (my example isn’t entirely fair, I suspect that waste heat would cook everything before 44 weeks passed). So you build a huge number of stations that either compress the atmosphere or chemically bond the gasses to form solids.
With the vast resources in orbit, you build a sun-shade to stop all solar input to reduce the heat problem, and perhaps you build giant heat radiators in space and fling cold heat sinks to the planet or something. (with no atmospheric friction and superconductive launchers, this might work). You can also build giant solar arrays and beam microwave power down to the planet to supply the equipment so that each subunit no longer needs a nuclear reactor.
Once the earth’s crust is gone, what do you do about the rest of the planet’s mass? Knock molten globules into orbit by bombarding the planet with high energy projectiles? Build some kind of heat resistant containers that you launch into space full of lava? I don’t know. But at this point you have converted the entire earth’s crust into machines or waste piles to work with.
This is also yet another reason that AI is part of the puzzle. Even if failures were rare, there probably are not enough humans available to keep 1e13 robotic systems functioning, if each system occasionally needed a remote worker to log in and repair some fault. There’s also the engineering part of the challenge : these later steps require very complex systems to be designed and operated. If you have human grade AI, and the hardware to run a single human grade entity is just a few kilograms of nano-circuitry (like the actual hardware in your skull), you can create more intelligence to run the system as fast as you replicate everything else.
That looks like it’s missing the point to me. As one of my physics professors put it, “we already have grey goo. It’s called bacteria.” If living cells are as good as it gets, and e-coli didn’t tear apart the Earth, that’s solid evidence that nanosystems won’t tear apart the Earth.
I’d say life is very near to as good as it gets in terms of moving around chemical energy and using it to transform materials without something like a furnace or a foundry. You’re never going to eat rock, it’s already in a pretty damn low energy state that you cannot use for energy. Lithotrophic bacteria take advantage of redox differences between materials in rocks and live REALLY slowly so that new materials can leech in. You need to apply external energy to it in order to transform it. And as TheOtherDave has said, major alterations have happened but according to rather non-grey-goo patterns, and I suspect that the sorts of large-scale (as opposed to a side-branch that some energy takes) reactions will be more similar to biological transformations than to other possibilities.
I do think that life is not necessarily as good as it gets in terms of production of interesting bulk materials or photosynthesis though because in both these cases we can take advantage of non-self-replicating (on its own) infrastructure to help things along. Imagine a tank in which electrodes coming from photovoltaics (hopefully made of something better than the current heavy-metal doped silicon that could easily be recycled or degraded or something when they inevitably photodegrade) directly drive the redox reactions that fix CO2 from the air into organic molecules, followed by the chemistry required to take that feedstock and make it into an interesting material (along with an inevitable waste product or six). Dropper in the appropriate nutrient/vitamin-analogues and let it run, then purify it… I sometimes wonder if such a system might in the long run cause an ‘ecological’ disruption by being more efficient at creating materials from simple feedstocks than regular living plants and over very long timescales crowding them out, but then there is the issue of the non-self-replicating components which add a drag. Its a very interesting and potentially strange set of scenarios to be sure, but yeah not exactly grey goo (grey sprawl?).
EDIT: Percival Zhang’s research at Virginia Tech may provide a look at some of the ideas I find particularly interesting:
Cell-free biofuel production:
http://pubs.acs.org/doi/abs/10.1021/cs200218f
Proposals for synthetic photosynthesis:
http://pubs.acs.org/doi/abs/10.1021/bk-2012-1097.ch015
http://precedings.nature.com/documents/4167/version/1
General overview:
http://www.vt.edu/spotlight/innovation/2012-02-27-fuels/zhang.html
I’d be really surprised if evolution has done all it can. We simply don’t know enough to say what might turn up in the next million years or ten million years.
Though they can alter it catastrophically.
Bacteria, as well as all life, are stuck at a local maximum because evolution cannot find optimal solutions. Part of Drexler’s work is to estimate what the theoretical optimum solutions can do.
My statement “tear apart planets” assumed too much knowledge on the part of the reader. I thought it was frankly pretty obvious. If you have a controllable piece of industrial machinery that uses electricity and can process common elements into copies of itself, but runs no faster than bacteria, tearing apart a planet is a straightforward engineering excercise. I did NOT mean the machinery looked like bacteria in any way, merely that it could copy itself no faster than bacteria.
And by “copy itself”, what I really meant is that given supplies of feedstock (bacteria need sugar, water, and a few trace elements...our “nanomachinery” would need electricity, and a supply of intermediates for every element you are working with in a pure form) it can arrange that feedstock into thousands of complex machine parts, such that the machinery that is doing this process can make it’s own mass in atomically perfect products in an hour.
I’ll leave it up to you to figure out how you could use this tech to take a planet apart in a few decades. I don’t mean a sci-fi swarm of goo, I mean an organized effort resembling a modern mine or construction site.
It’s not clear to me what you mean by “tearing apart a planet.” Are you sifting out most of the platinum and launching it into orbit? Turning it into asteroids? Rendering the atmosphere inhospitable to humans?
Because I agree that the last is obviously possible, the first probably possible, the second probably impossible without ludicrous expenditures of effort. But it’s not clear to me that any of those are things which nanotechnology would be the core enabler on.
If you mean something like “reshape the planet in its image,” then again I think bacteria are a good judge of feasibility- because of the feedstock issues. As well, it eventually becomes more profitable to prey on the nanomachines around you than the inert environment, and so soon we have an ecosystem a biologist would find familiar.
Jumping to another description, we could talk about “revolutionary technologies,” like the Haber-Bosch process, which consumes about 1% of modern energy usage and makes agriculture and industry possible on modern scales. It’s a chemical trick that extracts nitrogen from its inert state in the atmosphere and puts it into more useful forms like ammonia. Nanotech may make many tricks like that much more available and ubiquitous, but I think it will be a somewhat small addition to current biological and chemical industries, rather than a total rewriting of those fields.
This problem is very easy to solve using induction. Base step : the minimum “replicative subunit”. For life, that is usually a single cell. For nano-machinery, it is somewhat larger. For the sake of penciling in numbers, suppose you need a robot with a scoop and basic mining tools, a vacuum chamber, a 3d printer able to melt metal powder, a nanomachinery production system that is itself composed of nanomachinery, a plasma furnace, a set of pipes and tubes and storage tanks for producing the feedstock the nanomachinery needs, and a power source.
All in all, you could probably fit a single subunit into the size and mass of a greyhound bus. One notable problem is that there’s enough complexity here that current software could probably not keep a factory like this running forever because eventually something would break that it doesn’t know how to fix.
Anyways, you set down this subunit on a planet. It goes to work. In an hour, the nanomachinery subunit has made a complete copy of itself. In somewhat more time, it has to manufacture a second copy of everything else. The nanomachinery subunit makes all the high end stuff—the sensors, the circuitry, the bearings—everything complex, while the 3d printer makes all the big parts.
Pessimistically, this takes a week. A greyhound bus is 9x45 feet, and there are 5.5e15 square feet on the earth’s surface. To cover the whole planet’s surface would therefore take 44 weeks.
Now you need to do something with all the enormous piles of waste material (stuff you cannot make more subunits with) and un-needed materials. So you reallocate some of the 1.3e13 robotic systems to build electromagnetic launchers to fling the material into orbit. You also need to dispose of the atmosphere at some point, since all that air causes each electromagnetic launch to lose energy as friction, and waste heat is a huge problem. (my example isn’t entirely fair, I suspect that waste heat would cook everything before 44 weeks passed). So you build a huge number of stations that either compress the atmosphere or chemically bond the gasses to form solids.
With the vast resources in orbit, you build a sun-shade to stop all solar input to reduce the heat problem, and perhaps you build giant heat radiators in space and fling cold heat sinks to the planet or something. (with no atmospheric friction and superconductive launchers, this might work). You can also build giant solar arrays and beam microwave power down to the planet to supply the equipment so that each subunit no longer needs a nuclear reactor.
Once the earth’s crust is gone, what do you do about the rest of the planet’s mass? Knock molten globules into orbit by bombarding the planet with high energy projectiles? Build some kind of heat resistant containers that you launch into space full of lava? I don’t know. But at this point you have converted the entire earth’s crust into machines or waste piles to work with.
This is also yet another reason that AI is part of the puzzle. Even if failures were rare, there probably are not enough humans available to keep 1e13 robotic systems functioning, if each system occasionally needed a remote worker to log in and repair some fault. There’s also the engineering part of the challenge : these later steps require very complex systems to be designed and operated. If you have human grade AI, and the hardware to run a single human grade entity is just a few kilograms of nano-circuitry (like the actual hardware in your skull), you can create more intelligence to run the system as fast as you replicate everything else.