you may be disappointed, unless you make 40+ predictions per week it will be hard to compare weekly drift, the Bernoulli distribution has a much higher variance compared to the normal distribution, so the uncertainty estimate of the calibration is correspondingly wide (high uncertainty of data → high uncertainty of regression parameters). My post 3 will be a hierarchical model which may suite your needs better but it will maybe be a month before I get around to making that model.
If there are many people like you then we may try to make a hackish model that down weights older predictions as they are less predictive of your current calibration than newer predictions, but I will have to think long and hard to make than into a full Bayesian model, so I am making no promises
you may be disappointed, unless you make 40+ predictions per week it will be hard to compare weekly drift, the Bernoulli distribution has a much higher variance compared to the normal distribution, so the uncertainty estimate of the calibration is correspondingly wide (high uncertainty of data → high uncertainty of regression parameters). My post 3 will be a hierarchical model which may suite your needs better but it will maybe be a month before I get around to making that model.
If there are many people like you then we may try to make a hackish model that down weights older predictions as they are less predictive of your current calibration than newer predictions, but I will have to think long and hard to make than into a full Bayesian model, so I am making no promises