Planned summary of this sequence for the Alignment Newsletter:
This sequence presents the author’s personal view on the current best arguments for AI risk, explained from first principles (that is, without taking any previous claims for granted). The argument is a specific instantiation of the _second species argument_ that sufficiently intelligent AI systems could become the most intelligent species, in which case humans could lose the ability to create a valuable and worthwhile future.
We should clarify what we mean by superintelligence, and how it might arise. The author considers intelligence as quantifying simply whether a system “could” perform a wide range of tasks, separately from whether it is motivated to actually perform those tasks. In this case, we could imagine two rough types of intelligence. The first type, epitomized by most current AI systems, trains an AI system to perform many different tasks, so that it is then able to perform all of those tasks; however, it cannot perform tasks it has not been trained on. The second type, epitomized by human intelligence and <@GPT-3@>(@Language Models are Few-Shot Learners@), trains AI systems in a task-agnostic way, such that they develop general cognitive skills that allow them to solve new tasks quickly, perhaps with a small amount of training data. This second type seems particularly necessary for tasks where data is scarce, such as the task of being a CEO of a company. Note that these two types should be thought of as defining a spectrum, not a binary distinction, since the type of a particular system depends on how you define your space of “tasks”.
How might we get AI systems that are more intelligent than humans? Assuming we can get a model to human-level intelligence, there are then three key advantages of an AI system that would allow it to go further. First, they can be easily replicated, suggesting that we could get a _collective_ superintelligence via a collection of replicated AI systems working together and learning from each other. Second, there are no limits imposed by biology, and so we can e.g. make the models arbitrarily large, unlike with human brains. Finally, the process of creation of AI systems will be far better understood than that of human evolution, and AI systems will be easier to directly modify, allowing for AI systems to recursively improve their own training process (complementing human researchers) much more effectively than humans can improve themselves or their children.
The second species argument relies on the argument that superintelligent AI systems will gain power over humans, which is usually justified by arguing that the AI system will be goal-directed. Making this argument more formal is challenging: the EU maximizer framework <@doesn’t work for this purpose@>(@Coherent behaviour in the real world is an incoherent concept@) and applying the intentional stance only helps when you have some prior information about what goals the AI system might have, which begs the question.
The author decides to instead consider a more conceptual, less formal notion of agency, in which a system is more goal-directed the more its cognition has the following properties: (1) self-awareness, (2) planning, (3) judging actions or plans by their consequences, (4) being sensitive to consequences over large distances and long time horizons, (5) internal coherence, and (6) flexibility and adaptability. (Note that this can apply to a single unified model or a collective AI system.) It’s pretty hard to say whether current training regimes will lead to the development of these capabilities, but one argument for it is that many of these capabilities may end up being necessary prerequisites to training AI agents to do intellectual work.
Another potential framework is to identify a goal as some concept learned by the AI system, that then generalizes in such a way that the AI system pursues it over longer time horizons. In this case, we need to predict what concepts an AI system will learn and how likely it is that they generalize in this way. Unfortunately, we don’t yet know how to do this.
What does alignment look like? The author uses <@intent alignment@>(@Clarifying “AI Alignment”@), that is, the AI system should be “trying to do what the human wants it to do”, in order to rule out the cases where the AI system causes bad outcomes through incompetence where it didn’t know what it was supposed to do. Rather than focusing on the outer and inner alignment decomposition, the author prefers to take a holistic view in which the choice of reward function is just one (albeit quite important) tool in the overall project of choosing a training process that shapes the AI system towards safety (either by making it not agentic, or by shaping its motivations so that the agent is intent aligned).
Given that we’ll be trying to build aligned systems, why might we still get an existential catastrophe? First, a failure of alignment is still reasonably likely, since (1) good behavior is hard to identify, (2) human values are complex, (3) influence-seeking may be a useful subgoal during training, and thus incentivized, (4) it is hard to generate training data to disambiguate between different possible goals, (5) while interpretability could help it seems quite challenging. Then, given a failure of alignment, the AI systems could seize control via the mechanisms suggested in <@What failure looks like@> and Superintelligence. How likely this is depends on factors like (1) takeoff speed, (2) how easily we can understand what AI systems are doing, (3) how constrained AI systems are at deployment, and (4) how well humanity can coordinate.
Planned opinion:
I like this sequence: I think it’s a good “updated case” for AI risk that focuses on the situation in which intelligent AI systems arise through training of ML models. The points it makes are somewhat different from the ones I would make if I were writing such a case, but I think they are still sufficient to make the case that humanity has work to do if we are to ensure that AI systems we build are aligned.
Note: There is currently a lot of stuff I want to cover in the newsletter, so this will probably go out in the 10⁄21 newsletter.
“that is, without relying on other people’s arguments” doesn’t feel quite right to me, since obviously a bunch of these arguments have been made before. It’s more like: without taking any previous claims for granted.
“there are then three key advantages of an AI system that would allow it to go further” Your list of 3 differs from my list of 3. Also, my list is not of key advantages, but of features which don’t currently contribute to AI progress but will after we’ve got human-level AGI. I think that AIs will also have advantages over humans in data, compute and algorithms, which are the features that currently contribute to AI progress; and if I had to pick, I’d say data+compute+algorithms are more of an advantage than replication+cultural learning+recursive improvement. But I focus on the latter because they haven’t been discussed as much.
“that is, without relying on other people’s arguments” doesn’t feel quite right to me, since obviously a bunch of these arguments have been made before. It’s more like: without taking any previous claims for granted.
Changed, though the way I use words those phrases mean the same thing.
Your list of 3 differs from my list of 3.
Yeah this was not meant to be a direct translation of your list. (Your list of 3 is encompassed by my first and third point.) You mentioned six things:
more compute, better algorithms, and better training data
and
replication, cultural learning, and recursive improvement
which I wanted to condense. (The model size point was meant to capture the compute case.) I did have a lot of trouble understanding what the point of that section was, though, so it’s plausible that I’ve condensed it poorly for whatever point you were making there.
Perhaps the best solution is to just delete that particular paragraph? As far as I can tell, it’s not relevant to the rest of the arguments, and this summary is already fairly long and somewhat disjointed.
I did have a lot of trouble understanding what the point of that section was, though, so it’s plausible that I’ve condensed it poorly for whatever point you were making there.
My thinking here is something like: humans became smart via cultural evolution, but standard AI safety arguments ignore this fact. When we think about AI progress from this perspective though, we get a different picture of the driving forces during the takeoff period. In particular, the three things I’ve listed are all ways that interactions between AGIs will be crucial to their capabilities, in addition to the three factors which are currently crucial for AI development.
Planned summary of this sequence for the Alignment Newsletter:
Planned opinion:
Note: There is currently a lot of stuff I want to cover in the newsletter, so this will probably go out in the 10⁄21 newsletter.
Thanks! Good summary. A couple of quick points:
“that is, without relying on other people’s arguments” doesn’t feel quite right to me, since obviously a bunch of these arguments have been made before. It’s more like: without taking any previous claims for granted.
“there are then three key advantages of an AI system that would allow it to go further” Your list of 3 differs from my list of 3. Also, my list is not of key advantages, but of features which don’t currently contribute to AI progress but will after we’ve got human-level AGI. I think that AIs will also have advantages over humans in data, compute and algorithms, which are the features that currently contribute to AI progress; and if I had to pick, I’d say data+compute+algorithms are more of an advantage than replication+cultural learning+recursive improvement. But I focus on the latter because they haven’t been discussed as much.
Changed, though the way I use words those phrases mean the same thing.
Yeah this was not meant to be a direct translation of your list. (Your list of 3 is encompassed by my first and third point.) You mentioned six things:
and
which I wanted to condense. (The model size point was meant to capture the compute case.) I did have a lot of trouble understanding what the point of that section was, though, so it’s plausible that I’ve condensed it poorly for whatever point you were making there.
Perhaps the best solution is to just delete that particular paragraph? As far as I can tell, it’s not relevant to the rest of the arguments, and this summary is already fairly long and somewhat disjointed.
My thinking here is something like: humans became smart via cultural evolution, but standard AI safety arguments ignore this fact. When we think about AI progress from this perspective though, we get a different picture of the driving forces during the takeoff period. In particular, the three things I’ve listed are all ways that interactions between AGIs will be crucial to their capabilities, in addition to the three factors which are currently crucial for AI development.
Will edit to make this clearer.