Hm! Nobody has ever asked me to teach them how to teach. It’s very difficult to formalize the knowledge without a context, but here are some questions to ask yourself that may help you think of subtopics:
(1) What data or inputs do I typically need to solve a problem in this subject? E.g., if you want to send a robot to the moon, you need to know the mass of the robot, the location of the moon, the cost of fuel, the gravitational co-efficient, and so on. Each of these inputs can be a subtopic of “rocketry”—you might want to teach your students how to weigh a robot, how to trace the moon’s orbit, how to comparison shop for fuel, and how to look up a universal constant. Only after learning all four of these skills would a beginning rocketry student be in a position to independently (i.e, don’t hire somebody else to do it) and directly (i.e., don’t just judge based on past accomplishments / perceived difficulty) assess the likelihood that an arbitrary moon-launch project would succeed.
(2) What are the prerequisites for attacking a problem in this field? Any ordinary group of Americans will have a median student who is woefully deficient at one or more prerequisites. No matter how much it might “make sense” to assume that people in your class know what they are “supposed” to know, if your goal is to actually teach them the next step, then you can best achieve your goal by discarding this assumption, testing for competency at the prerequisites, and then making subtopics out of any prerequisites where people seem weak. E.g., if you are trying to teach people how to compost their domestic food waste, you might think that the most important information to convey relates to the size, shape, and composition of a compost pile—what to put in each layer, how big to make each layer, etc. But the task “add a layer of dead foliage that’s two feet thick and six feet around” is not a primitive task. It assumes that people know how to, e.g., operate a shovel, identify which foliage is dead, and measure distances with rough accuracy. Chances are, at least some of your audience can’t do these things well, or at all. Think about what concrete actions your students will need to take in order to follow each of your instructions, and then make each of those concrete actions a subtopic.
(3) Is this really a single problem, or is a related cluster of problems? There’s nothing wrong with teaching related problems in close (geographical or temporal) proximity to each other so that people will find it easier to cross-apply skills, but that’s different from trying to teach a group of related problems all at the same time. “Being rational,” e.g., turns out to subdivide into “seeing things as they really are” and “doing what actually achieves my goals.” Although these two skills have similar prerequisites and are deeply complementary, they’re still distinct: you can imagine being good at one but not the other. Try to identify the smallest subset of your topic that would still be a useful skill to have if you had it independently—if I’m training a soccer player, and the big game starts in two minutes, and I have an empty bench, it’d be at least somewhat handy if my protege had figured out how to boot the ball down the field, even if she was still hopeless at all other soccer-related tasks. That means “booting” is a sub-topic. Don’t teach “soccer” except in some meditative/spiritual sense; at the algorithmic level, teach booting, running, passing, teamwork, etc.
(4) Mix and match the questions to get narrower sub-topics. E.g., suppose booting is a subtopic of soccer. Well, what are the inputs that a student will use in deciding how to boot? At a minimum, you need to know where your own goal is and where the ball is so that you can move the ball away from your goal. So, I will probably give an instruction like “find the ball.” What are the prerequisites of “finding the ball?” It helps a whole lot if you are consciously following the ball as it moves from one person to the next; this skill is generally easy, but some absent-minded people don’t realize that they should be doing it, and some unusually absent-minded people might not know how to do it. It turns out that it helps to see which direction people are running in; they tend to run toward the ball. So we have soccer > booting > finding ball > visually following ball > visually following people. When you dig four levels down, it’s easy enough to get to twenty or eighty sub-sub-subtopics within “soccer,” and if you spend a few minutes teaching each of those, you’ll usually have exhausted your audience’s attention span.
Hm! Nobody has ever asked me to teach them how to teach. It’s very difficult to formalize the knowledge without a context, but here are some questions to ask yourself that may help you think of subtopics:
(1) What data or inputs do I typically need to solve a problem in this subject? E.g., if you want to send a robot to the moon, you need to know the mass of the robot, the location of the moon, the cost of fuel, the gravitational co-efficient, and so on. Each of these inputs can be a subtopic of “rocketry”—you might want to teach your students how to weigh a robot, how to trace the moon’s orbit, how to comparison shop for fuel, and how to look up a universal constant. Only after learning all four of these skills would a beginning rocketry student be in a position to independently (i.e, don’t hire somebody else to do it) and directly (i.e., don’t just judge based on past accomplishments / perceived difficulty) assess the likelihood that an arbitrary moon-launch project would succeed.
(2) What are the prerequisites for attacking a problem in this field? Any ordinary group of Americans will have a median student who is woefully deficient at one or more prerequisites. No matter how much it might “make sense” to assume that people in your class know what they are “supposed” to know, if your goal is to actually teach them the next step, then you can best achieve your goal by discarding this assumption, testing for competency at the prerequisites, and then making subtopics out of any prerequisites where people seem weak. E.g., if you are trying to teach people how to compost their domestic food waste, you might think that the most important information to convey relates to the size, shape, and composition of a compost pile—what to put in each layer, how big to make each layer, etc. But the task “add a layer of dead foliage that’s two feet thick and six feet around” is not a primitive task. It assumes that people know how to, e.g., operate a shovel, identify which foliage is dead, and measure distances with rough accuracy. Chances are, at least some of your audience can’t do these things well, or at all. Think about what concrete actions your students will need to take in order to follow each of your instructions, and then make each of those concrete actions a subtopic.
(3) Is this really a single problem, or is a related cluster of problems? There’s nothing wrong with teaching related problems in close (geographical or temporal) proximity to each other so that people will find it easier to cross-apply skills, but that’s different from trying to teach a group of related problems all at the same time. “Being rational,” e.g., turns out to subdivide into “seeing things as they really are” and “doing what actually achieves my goals.” Although these two skills have similar prerequisites and are deeply complementary, they’re still distinct: you can imagine being good at one but not the other. Try to identify the smallest subset of your topic that would still be a useful skill to have if you had it independently—if I’m training a soccer player, and the big game starts in two minutes, and I have an empty bench, it’d be at least somewhat handy if my protege had figured out how to boot the ball down the field, even if she was still hopeless at all other soccer-related tasks. That means “booting” is a sub-topic. Don’t teach “soccer” except in some meditative/spiritual sense; at the algorithmic level, teach booting, running, passing, teamwork, etc.
(4) Mix and match the questions to get narrower sub-topics. E.g., suppose booting is a subtopic of soccer. Well, what are the inputs that a student will use in deciding how to boot? At a minimum, you need to know where your own goal is and where the ball is so that you can move the ball away from your goal. So, I will probably give an instruction like “find the ball.” What are the prerequisites of “finding the ball?” It helps a whole lot if you are consciously following the ball as it moves from one person to the next; this skill is generally easy, but some absent-minded people don’t realize that they should be doing it, and some unusually absent-minded people might not know how to do it. It turns out that it helps to see which direction people are running in; they tend to run toward the ball. So we have soccer > booting > finding ball > visually following ball > visually following people. When you dig four levels down, it’s easy enough to get to twenty or eighty sub-sub-subtopics within “soccer,” and if you spend a few minutes teaching each of those, you’ll usually have exhausted your audience’s attention span.
Hope some of this helps; feedback is welcome.
Thanks, that was surprisingly informative.