That’s exactly what I used it for in my calculation, I didn’t misunderstand that. Your computation of “conservation of expected evidence” simply does not work unless your prior is extremely high to begin with. Put simply, you cannot be 99% sure that you’ll later change your current belief in H of p to anything greater than 100*p/99, which places a severe lower bound on p for a likelihood ratio of 20:1.
Yes! It worked! I learned something by getting embarrassed online!!!
ike, you’re absolutely correct. I applied conservation of expected evidence to likelihood ratios instead of to posterior probabilities, and thus didn’t realize that the prior puts bounds on expected likelihood ratios. This also means that the numbers I suggested (1% of 1:2000, 99% of 20:1) define the prior precisely at 98.997%.
I’m going to leave the fight to defend the reputation of Bayesian inference to you and go do some math exercises.
That’s exactly what I used it for in my calculation, I didn’t misunderstand that. Your computation of “conservation of expected evidence” simply does not work unless your prior is extremely high to begin with. Put simply, you cannot be 99% sure that you’ll later change your current belief in H of p to anything greater than 100*p/99, which places a severe lower bound on p for a likelihood ratio of 20:1.
Yes! It worked! I learned something by getting embarrassed online!!!
ike, you’re absolutely correct. I applied conservation of expected evidence to likelihood ratios instead of to posterior probabilities, and thus didn’t realize that the prior puts bounds on expected likelihood ratios. This also means that the numbers I suggested (1% of 1:2000, 99% of 20:1) define the prior precisely at 98.997%.
I’m going to leave the fight to defend the reputation of Bayesian inference to you and go do some math exercises.