I’m curious what you think of Paul’s points (2) and (3) here:
Eliezer often talks about AI systems that are able to easily build nanotech and overpower humans decisively, and describes a vision of a rapidly unfolding doom from a single failure. This is what would happen if you were magically given an extraordinarily powerful AI and then failed to aligned it, but I think it’s very unlikely what will happen in the real world. By the time we have AI systems that can overpower humans decisively with nanotech, we have other AI systems that will either kill humans in more boring ways or else radically advanced the state of human R&D. More generally, the cinematic universe of Eliezer’s stories of doom doesn’t seem to me like it holds together, and I can’t tell if there is a more realistic picture of AI development under the surface.
One important factor seems to be that Eliezer often imagines scenarios in which AI systems avoid making major technical contributions, or revealing the extent of their capabilities, because they are lying in wait to cause trouble later. But if we are constantly training AI systems to do things that look impressive, then SGD will be aggressively selecting against any AI systems who don’t do impressive-looking stuff. So by the time we have AI systems who can develop molecular nanotech, we will definitely have had systems that did something slightly-less-impressive-looking.
And specifically to what degree you think future AI systems will make “major technical contributions” that are legible to their human overseers before they’re powerful enough to take over completely.
You write:
I expect that, shortly after AIs are able to autonomously develop, analyze and code numerical algorithms better than humans, there’s going to be some pretty big (like, multiple OOMs) progress in AI algorithmic efficiency (even ignoring a likely shift in ML/AI paradigm once AIs start doing the AI research). That’s the sort of thing which leads to a relatively discontinuous takeoff.
But how likely do you think it is that these OOM jumps happen before vs. after a decisive loss of control?
My own take: I think there will probably be enough selection pressure and sophistication in primarily human-driven R&D processes alone to get to uncontrollable AI. Weak AGIs might speed the process along in various ways, but by the time an AI itself can actually drive the research process autonomously (and possibly make discontinuous progress), the AI will already also be capable of escaping or deceiving its operators pretty easily, and deception / escape seems likely to happen first for instrumental reasons.
But my own view isn’t based on the difficulty of verification vs. generation, and I’m not specifically skeptical of bureaucracies / delegation. Doing bad / fake R&D that your overseers can’t reliably check does seem somewhat easier than doing real / good R&D, but not always, and as a strategy seems like it would usually be dominated by “just escape first and do your own thing”.
I’m curious what you think of Paul’s points (2) and (3) here:
And specifically to what degree you think future AI systems will make “major technical contributions” that are legible to their human overseers before they’re powerful enough to take over completely.
You write:
But how likely do you think it is that these OOM jumps happen before vs. after a decisive loss of control?
My own take: I think there will probably be enough selection pressure and sophistication in primarily human-driven R&D processes alone to get to uncontrollable AI. Weak AGIs might speed the process along in various ways, but by the time an AI itself can actually drive the research process autonomously (and possibly make discontinuous progress), the AI will already also be capable of escaping or deceiving its operators pretty easily, and deception / escape seems likely to happen first for instrumental reasons.
But my own view isn’t based on the difficulty of verification vs. generation, and I’m not specifically skeptical of bureaucracies / delegation. Doing bad / fake R&D that your overseers can’t reliably check does seem somewhat easier than doing real / good R&D, but not always, and as a strategy seems like it would usually be dominated by “just escape first and do your own thing”.