These are good points. From my understanding of how processors work, it seems one would get most of the benefits you mention by having addresses/absolute locations (and thus being able to use pointers [by using addresses instead of left/right operations]). Does that ring true to you?
I think I got something about what you said, that in a certain sense we don’t care about state with a Turing machine. It just occurred to me that the only reason we can use these more convenient designs in a processor is because its memory is limited. (Not sure if this is true? There is probably a really awkward way you could encode addresses, even if your memory were infinite? You’d probably do some tree-like thing, and figuring out where you actually want to put stuff would take some time.)
These are good points. From my understanding of how processors work, it seems one would get most of the benefits you mention by having addresses/absolute locations (and thus being able to use pointers [by using addresses instead of left/right operations]). Does that ring true to you?
I think I got something about what you said, that in a certain sense we don’t care about state with a Turing machine. It just occurred to me that the only reason we can use these more convenient designs in a processor is because its memory is limited. (Not sure if this is true? There is probably a really awkward way you could encode addresses, even if your memory were infinite? You’d probably do some tree-like thing, and figuring out where you actually want to put stuff would take some time.)