From the graph it looks like stockfish is able to match the results of engines from ~2000 using ~1.5 orders of magnitude less compute.
Is that the right way to read this graph?
Do you have the numbers for SF8 evaluations so that I can use those directly rather than eyeballing from this graph? (I’m generally interested in whatever raw data you have.)
ELO = [3407,3375,3318,3290,3260,3225,3181,3125,3051,2955,2831,2671,2470,2219,1910]
Note that the range of values is larger than the plotted range in the Figure. The Figure cuts off at a 80486DX 33 MHz, 27 MIPS, introduced May 7, 1990.
To derive an analytical result, it is reasonable to interpolate with a spline and then subtract. Let me know if you have a specific question (e.g. for the year 2000).
How are those MIPS numbers produced? My impression was that the raw numbers were nodes/sec, and then some calibration was done to relate this to MIPS?
The MIPS are only a “lookup table” from the year, based on a CPU list. It’s for the reader’s convenience to show the year (linear), plus a rough measure of compute (exponential).
The nodes/s measure has the problem that it is engine-dependent.
The real math was done by scaling down one engine (SF8) by time-per-move, and then calibrating the time to the computers of that era (e.g., a Quad i7 from 2009 has 200x the nodes/s compared to a PII-300 from 1999)
From the graph it looks like stockfish is able to match the results of engines from ~2000 using ~1.5 orders of magnitude less compute.
Is that the right way to read this graph?
Do you have the numbers for SF8 evaluations so that I can use those directly rather than eyeballing from this graph? (I’m generally interested in whatever raw data you have.)
Yes, that is a correct interpretation. The SF8 numbers are:
MIPS = [139814.4, 69907, 17476, 8738, 4369, 2184, 1092, 546.2, 273.1, 136.5, 68.3, 34.1, 17.1, 8.5, 4.3]
ELO = [3407,3375,3318,3290,3260,3225,3181,3125,3051,2955,2831,2671,2470,2219,1910]
Note that the range of values is larger than the plotted range in the Figure. The Figure cuts off at a 80486DX 33 MHz, 27 MIPS, introduced May 7, 1990.
To derive an analytical result, it is reasonable to interpolate with a spline and then subtract. Let me know if you have a specific question (e.g. for the year 2000).
How are those MIPS numbers produced? My impression was that the raw numbers were nodes/sec, and then some calibration was done to relate this to MIPS?
The MIPS are only a “lookup table” from the year, based on a CPU list. It’s for the reader’s convenience to show the year (linear), plus a rough measure of compute (exponential).
The nodes/s measure has the problem that it is engine-dependent.
The real math was done by scaling down one engine (SF8) by time-per-move, and then calibrating the time to the computers of that era (e.g., a Quad i7 from 2009 has 200x the nodes/s compared to a PII-300 from 1999)