I’m not sure what the quantum-goo explanation is adding here.
A perfect predictor will predict correctly and perfectly that the brain both one boxes and two boxes in different Everett branches (with vastly different weights). This is different in nature to an imperfect predictor that isn’t able to model the behavior of the brain with complete certainty yet given preferences that add up to normal it requires that you use the same math. It means you do not have to abandon the premise “perfect predictor” for the probabilistic reasoning to be necessary.
I’m completely lost by the “proportional to how much of the brain will be one boxing” strategy.
How much weight the everett branches in which it one box have relative to the everett branches in which it two boxes.
Allow me to emphasise:
As you say the one boxing remains stable under this uncertainty and even imperfect predictors.
A perfect predictor will predict correctly and perfectly that the brain both one boxes and two boxes in different Everett branches (with vastly different weights). This is different in nature to an imperfect predictor that isn’t able to model the behavior of the brain with complete certainty yet given preferences that add up to normal it requires that you use the same math. It means you do not have to abandon the premise “perfect predictor” for the probabilistic reasoning to be necessary.
How much weight the everett branches in which it one box have relative to the everett branches in which it two boxes.
Allow me to emphasise:
(I think we agree?)
Ah, I see what you mean.
Yes, I think we agree. (I had previously been unsure.)