Not sure what “powerful” means in this context. I have a degree in chemical engineering so I’m moderately confident that I understand compression and saturation pressure. Saturation pressure of water in air declines with temperature. Making the air colder reduces the humidity of the air, and this is true all the way down to the freezing point of water. In a large building, you will have a pump outlet temperature much lower than the thermostat setpoint. For example, the coils themselves may be operating at 25-45 F, even though the air in in the building at large may be 75 F. The consequence of this is that the percent saturation (“humidity”) of the air will be significantly lower than the outdoor humidity. The net effect will be perceptible drying.
Not sure what “powerful” means in this context. I have a degree in chemical engineering so I’m moderately confident that I understand compression and saturation pressure. Saturation pressure of water in air declines with temperature. Making the air colder reduces the humidity of the air, and this is true all the way down to the freezing point of water. In a large building, you will have a pump outlet temperature much lower than the thermostat setpoint. For example, the coils themselves may be operating at 25-45 F, even though the air in in the building at large may be 75 F. The consequence of this is that the percent saturation (“humidity”) of the air will be significantly lower than the outdoor humidity. The net effect will be perceptible drying.