Is there good evidence about our universe being or not being computable?
For example, if positions of particles have infinitely many decimal places, then the universe is incomputable, even if its laws are relatively simple. If the positions of particles are computationally finite, that probably requires explanation for why physical processes seem the same if you e.g. rotate them by an arbitrary angle.
I think the universe could be computable even if positions have infinitely many decimal places, as long as the sequence is computable. But you are right that it would be incomputable if the sequence is basically random, and there is no proof that things are not like this.
Conway’s Game of Life is Turing complete, so unless our universe is incomputable, it can be be simulated by Conway’s game.
Is there good evidence about our universe being or not being computable?
For example, if positions of particles have infinitely many decimal places, then the universe is incomputable, even if its laws are relatively simple. If the positions of particles are computationally finite, that probably requires explanation for why physical processes seem the same if you e.g. rotate them by an arbitrary angle.
I think the universe could be computable even if positions have infinitely many decimal places, as long as the sequence is computable. But you are right that it would be incomputable if the sequence is basically random, and there is no proof that things are not like this.