If quantum mechanical models accurately describe what’s happening, the fact that we can’t picture it in our heads is not a problem.
I think there’s a danger of equivocating here on the words “what’s happening.” In other words, which “what’s happening” do the QM models describe?
I’ll elaborate. If we observe X, do the QM models describe X, or do they describe the (so far unobserved) phenomena that may underly X?
If the mathematical QM model merely describes X, it’s hard to see how it is anything other than a very succinct cataloging of the observations, put in a very useful form. That’s quite an achievement, but I can understand the hesitation with calling it an explanation or a theory.
If the QM model actually describes some as-yet unobserved phenomena that is proposed to underly X, then it seems like it avoids Monkeymind’s criticisms because there is actually something additional being posited to be happening, behind the scenes as it were.
If it is the latter, I’d be interested in seeing an example (anything in QM).
If the QM model actually describes some as-yet unobserved phenomena that is proposed to underly X, then it seems like it avoids Monkeymind’s criticisms because there is actually something additional being posited to be happening, behind the scenes as it were.
There are probably more examples than I’m aware of, but as I pointed out in an earlier comment to Monkeymind, quantum entanglement, which was regarded as an extremely counterintuitive prediction, was predicted by quantum mechanical models well in advance of observation.
Yes, but I’m a lawyer and lack the background to give a more specific example. All I’m trying to say is that disbelieving QM does have practical, real-world consequences.
I think there’s a danger of equivocating here on the words “what’s happening.” In other words, which “what’s happening” do the QM models describe?
I’ll elaborate. If we observe X, do the QM models describe X, or do they describe the (so far unobserved) phenomena that may underly X?
If the mathematical QM model merely describes X, it’s hard to see how it is anything other than a very succinct cataloging of the observations, put in a very useful form. That’s quite an achievement, but I can understand the hesitation with calling it an explanation or a theory.
If the QM model actually describes some as-yet unobserved phenomena that is proposed to underly X, then it seems like it avoids Monkeymind’s criticisms because there is actually something additional being posited to be happening, behind the scenes as it were.
If it is the latter, I’d be interested in seeing an example (anything in QM).
There are probably more examples than I’m aware of, but as I pointed out in an earlier comment to Monkeymind, quantum entanglement, which was regarded as an extremely counterintuitive prediction, was predicted by quantum mechanical models well in advance of observation.
ETA: Bose-Einstein condensates also come to mind.
If QM were false, computer circuits would not work.
That depends how false, and in what ways.
Yes, but I’m a lawyer and lack the background to give a more specific example. All I’m trying to say is that disbelieving QM does have practical, real-world consequences.