What if you can only approximate that equation instead of computing it directly, so that it’s possible that you and the equation will have different outputs? Should the equation be about your approximation of it, or should you just try to approximate the original equation?
Incidentally, that’s essentially a version the issue I was trying to deal with here (and in the linked conversation between Silas and I)
Ooh! Good point! And for readers who follow through, be sure to note my causal graph and my explanation of how Eliezer_Yudkowsky has previously accounted for how to handle errors when you can’t compute exactly what your output will be due to the hardware’s interference [/shameless self-promotion]
If you’re right, I’d be extra confused, because then Eliezer could account for the sort of error I was describing, in terms of ambiguity of what algorithm you’re actually running, but could not deal with the sort of errors due to one merely approximating the ideal algorithm, which I’d think to be somewhat of a subset of the class of issues I was describing.
Well, either way, as long as the issue is brought to the front and solved (eventually) somehow, I’m happy. :)
The difference is that Newcomb’s problem allows you to assume that your (believed) choice of output is guaranteed to be your actual decision.
Post-computation interference only occurs in real-life scenarios (or hypotheticals that assume this realistic constraint), and it is those scenarios where Eliezer_Yudkowsky shows that you should pick a different computation output, given its robustness against interference from your “corrupted hardware”.
Incidentally, that’s essentially a version the issue I was trying to deal with here (and in the linked conversation between Silas and I)
Ooh! Good point! And for readers who follow through, be sure to note my causal graph and my explanation of how Eliezer_Yudkowsky has previously accounted for how to handle errors when you can’t compute exactly what your output will be due to the hardware’s interference [/shameless self-promotion]
If you’re right, I’d be extra confused, because then Eliezer could account for the sort of error I was describing, in terms of ambiguity of what algorithm you’re actually running, but could not deal with the sort of errors due to one merely approximating the ideal algorithm, which I’d think to be somewhat of a subset of the class of issues I was describing.
Well, either way, as long as the issue is brought to the front and solved (eventually) somehow, I’m happy. :)
The difference is that Newcomb’s problem allows you to assume that your (believed) choice of output is guaranteed to be your actual decision.
Post-computation interference only occurs in real-life scenarios (or hypotheticals that assume this realistic constraint), and it is those scenarios where Eliezer_Yudkowsky shows that you should pick a different computation output, given its robustness against interference from your “corrupted hardware”.