An Artificial general intelligence, or AGI, is a machine capable of behaving intelligently over many domains. The term can be taken as a contrast to narrow AI, systems that do things that would be considered intelligent if a human were doing them, but that lack the sort of general, flexible learning ability that would let them tackle entirely new domains. Though modern computers have drastically more ability to calculate than humans, this does not mean that they are generally intelligent, as they have little ability to invent new problem-solving techniques, and their abilities are targeted in narrow domains.
If we consider only the first sentence, then yes. The rest of the paragraph points to something like “being able to generalize to new domains”. Not sure if Gato counts. (NB: this is just a LW tag, not a full-fledged definition.)
If by “sort of general, flexible learning ability that would let them tackle entirely new domains” we include adding new tokenised vectors in the training set, then this fit the definition. Of course this is “cheating” since the system is not learning purely by itself, but for the purpose of building a product or getting the tasks done this does not really matter.
And it’s not unconcievable to imagine self-supervised tokens generation to get more skills and perhaps a K-means algorithm to make sure that the new embeddings do not interfere with previous knowledge. It’s a dumb way of getting smarter, but apparently it works thanks to scale effects!
from the lesswrong docs
If we consider only the first sentence, then yes. The rest of the paragraph points to something like “being able to generalize to new domains”. Not sure if Gato counts. (NB: this is just a LW tag, not a full-fledged definition.)
If by “sort of general, flexible learning ability that would let them tackle entirely new domains” we include adding new tokenised vectors in the training set, then this fit the definition. Of course this is “cheating” since the system is not learning purely by itself, but for the purpose of building a product or getting the tasks done this does not really matter.
And it’s not unconcievable to imagine self-supervised tokens generation to get more skills and perhaps a K-means algorithm to make sure that the new embeddings do not interfere with previous knowledge. It’s a dumb way of getting smarter, but apparently it works thanks to scale effects!